Assynt’s etched landscape

Some place names describe the shape of landscape. South east of Lochinver lie Cnoc a Mhuilinn (“Mill Hill”), Gleann Sgoilte (“Cleft Glen”) and Gleannan na Gaoithe (“Windy Glen”). These are dramatic features where the land has been cleaved, leaving narrow slots where the wind howls and narrow fast rivers make mill streams.

Gleannan na Gaoithe, looking ESE

These dramatic features are all aligned in space. How did they form? A paper from 1956 maps them out and links them to a now vanished lake they call ‘Loch Suilven’. Using “an
ex-R.A.F. bubble-sextant in conjunction with a box-sextant
“, Alex J. Boyd of Inverkirkaig carefully mapped the fossil beaches left behind by this Loch. From this work it is clear that water levels were once much higher. He inferred that the lake once drained via our dramatic glens, until the modern Inverkirkaig river breached the lake and drained it, separating it out into Fionn Loch, Loch Veyatie and others.

Location map. Figure 2 from Boyd (1965).

The picture is complicated by ice. This landscape is haunted by the Ice Age and any carving into the ground could have been done by ice as well of water. Glacial melt water channels are features formed by the flow of ice close to glaciers. Water beneath may flow under pressure, or ice may dam rivers, or melt suddenly to create large volumes of water. Under these conditions, channels may be cut by catastrophic flood events.

Tracing the western edge of the area, around Badnaban (place of the women) Boyd reports “rounded boulders” of large size that suggest the water flow was of “torrential character”. High up, the walls of the channel below Cnoc a Mhuilinn have a polished appearance with scalloped shapes. The British Geological Survey interpret these as S-forms and P-forms and call the structure a glacial meltwater channel.

View of a rock surface in the glen below Cnoc a Mhuilinn

A brief scan of modern literature suggests that there is no consensus about the precise meaning of these features, but for sure they are consistent with a dramatic flooding event scouring out the channels. Ice flow may also have shaped the glens and both mechanisms may have acted at different times. But maybe what was eroded is more important than how it was done.

Glacial meltwater channel below Cnoc a Mhuilinn

The sculpture within the block

There’s a quote attributed to the sculptor Michelangelo, to the effect that the sculpture is already there within the block of marble, his job is merely to remove the material surrounding it. For this landscape, this may be literally true. We’ve talked of ice and water cutting into the ground, but maybe the most important features were already physically present within the bed rock, waiting to be revealed.

The cnoc and lochan landscape is an extremely distinctive feature of Lewisian gneiss areas. A similar landscape exists in Connemara on the deformed igneous rocks of Roundstone Bog. The writer Tim Robinson describes this landscape as “frightened”. It’s a largely random distribution of lochs and hills, straight lines appearing where it is cut by geological faults, breaks in the rock that weaken it.

Maarten Krabbendam and Tom Bradwell (of the British Geological Survey) have reviewed the cnoc and lochan terrane in Sutherland and conclude that its distinctive roughness is not a direct product of glacial erosion.

They review similar landscapes in other countries and note that they are a feature of rock type, not of erosion style. They compare the Assynt area with similar terrane in Namibia, where erosion is caused by wind-blown sand rather than ice. They show that the shape of the landscape is mostly controlled by chemical weathering, that weakens solid rock into weak ‘saprolite’. The role of erosion, whether scouring by ice or glacial meltwater, is to remove the saprolite, leaving the harder rock behind.

Chemical erosion is highly sensitive to rock type. The Lewisian Gneiss is cross-cut by vertical sheets of rock called dykes. One particular dyke (400 million years younger than the other Scourie dykes) is rich in olivine, a mineral too chemically delicate to last long at the surface. This dyke easily rots into saprolite, forming deep zones of soft rock. The glacial meltwater channel below Cnoc a Mhuilinn precisely follows this dyke; its location was determined not by the ephemeral flow of ice or water, but by events 1,992,000,000 years ago. Gleann Sgoilte was cut into another dyke and Gleannan na Gaoithe formed along a later shear zone, full of fractured and altered rock.

This pattern is common across the whole of Assynt, wherever Lewisian Gneiss is found. These remarkable glens may be more dramatic than most, thanks to glacial floods, but these were simply picking out the bones of the rock. This landscape was etched rather than scraped.

North American Arctic – icy beauty

Look at this. As an abstract pattern, it looks like something Gustav Klimt might paint.

But drill down into it in more detail and it changes into an uncomfortably close view of a reptiles skin.

All images in this post come from the North American Arctic – a place made beautiful and strange by ice. Conditions are so cold that the soil layers are almost permanently frozen. The rare occasions when it melts warps the ground in various distinctive ways.

Take the first image – the striking elongated light-blue lozenges are lakes. Lakes may form in the Arctic in areas called thermokarst. This a landscape full of hollows formed when patches of permafrost melt, causing hollows in the ground. These elongated examples are unusual. No-one knows for sure why these “oriented lakes” form, but they are often aligned with the prevailing wind, suggesting it has a role to play.

Here are some other examples, which seem to have edges with two sets of directions, making some of them look like badly-drawn hearts.

The lizard skin pattern above is known as “patterned ground” forms where soils regularly freeze and thaw. The periodic expansion of ice rearranges the soil and in the case of these polygons, wedges of ice may form in a regular pattern.

These processes occur in ‘peri-glacial’ environments. The term literally means “around glaciers” but it occurs over vast areas of the Arctic that are too near sea-level for glacial ice to build up. It can also occur at height in milder climates such as the Cairngorms in Britain or on top of African volcanoes (or even on Mars). During the colder parts of the current Ice Age, when large areas of the world were covered by ice sheets, the areas to the south of the ice were often peri-glacial. Ice-wedges and other peri-glacial features are relatively common in southern England where I live.

Pingoes are classic peri-glacial feature. In England these are round lakes formed when plugs of ice melted thousands of years ago as the climate warmed. In the Arctic they are 30-50m high hills with a core of ice – the name is Inuit for ‘small hill’. He is an example that is still a hills in Canada (note the patterned ground to its south).

These peri-glacial features are best seen near to rivers that flow into the Arctic. Further south, vast areas have very little soil, having been scraped clean by vast ice-sheets. One advantage of this, from my point of view, is that the geology is extremely well-exposed.

Here on Bathurst island in the Canadian Arctic, open folds in the some Devonian sediments are beautifully clear, complete with thickening of layers in the fold hinges.

These crazily-shaped islands in Hudson Bay are relics of folding deep within the earth. Imagine walking along those thin islands!

I’ll end with my favourite trace of ice in Canada.

The ghostly marks hiding under productive land in southern Canada were produced in a vast lake that formed as an ice-sheet melted. Ice-bergs floating in the shallow lake scraped along the lake-bed, leaving these ‘keel-marks’.

BRITICE-CHRONO: death of an ice sheet

Using many different techniques, dozens of scientists are studying the death of an ice sheet that once covered Britain and Ireland. They want to understand the future fate of modern-day ice.

The phrase “ice sheet” doesn’t do justice to our subject: this is not something you shatter when stepping on a frozen puddle. Covering over a million square kilometres, this sheet is also kilometres thick. As it grew it pulled enough water out of the world’s oceans to lower them by metres, affecting tropical coastlines as well as the land entombed beneath the ice. The vast bulk even pushed down the crust beneath, slowly moving the underlying mantle aside.

Melt pond on icesheet. Photo by Leif Taurer used under Creative Commons.

Melt pond on ice sheet. Photo by Leif Taurer used under Creative Commons.

The ice is constantly in motion. Snow falling on the ice sheet will eventually make its way to the sea, slowly flowing down and along.  Most is channelled into fast moving ice-streams.  This ice sheet is ‘marine-influenced‘, it sits partly on land, partly on the sea – most of its ice will end its days as an iceberg. The edges of the sheet can become undercut by the oceans, turning the edge into delicate ice shelves.

In the way it grows and flows, this ice sheet can seem almost alive. It will surely die, one day. Changing climate tips the balance between snow build-up and melting, the unstable ice shelves collapse and the ice-streams send ice to melt in the sea. In time the sheet thins to nothing and the world is transformed again.

BRITICE-CHRONO

My description of an ice sheet applies to the modern West Antarctic sheet. Scientists who study it worry about how, in the face of a rapidly changing climate, it might collapse, flooding cities across the globe. The IPCC identified this risk and highlighted how little we know about it.

27,000yearsago (2)

The British & Irish ice sheet, 27,000 years ago. Image courtesy of Chris Clarke.

My description also applies to the ice sheet that sat over Britain & Ireland 25,000 years ago.. A multi-disciplinary consortium, called BRITICE-CHRONO will greatly improve our understanding of the death of this ice sheet. This will be of great local interest, but will also help us predict the potentially troubled and troubling future of both the West Antarctic and Greenland ice sheets. The ancient climate change that killed the ice sheet was natural, but modern human-made warming melts ice just the same.

BRITICE

The physical traces of the death of the British ice sheet are easy to find: erratics, moraines and glacial lake deposits are just a few of the subtle but distinctive features to found over much of Britain. A now complete project called BRITICE, led by Professor Chris Clark of Sheffield University, mapped them all, focussing on traces of the final retreat of the ice sheet. Similar work in Ireland allows the pattern of retreat for the entire ice sheet to be inferred.

Maps showing the evolution of the British & Irish icesheet over time. Image from Chris Clark.

Maps showing the evolution of the British & Irish ice sheet over time. “19 ka BP” means 19,000 years before present. Image from Chris Clark.

CHRONO

BRITICE-CHRONO involves nearly 50 researchers from 8 universities plus the British Antarctic and Geological Surveys. A big part of the work of BRITICE-CHRONO is working out the age of various features. Familiar techniques such as radiocarbon dating are useful, but a new generation of dating techniques can do things that seem almost magical.

Optical stimulated luminescence (OSL) dates the last exposure of sunlight for individual quartz grains. Natural radioactivity traps electrons within defects in the crystal lattice of the quartz grains. If light comes through it frees them again and produces more light (the luminescence). Quartz exposed to sunlight at the surface does not show luminescence, but grains that have been buried in a sand bank for thousands of years do. Measuring luminescence in the lab allows an estimate how long they have been buried for and therefore when the sand was deposited.

Conversely, TCN (terrestrial cosmogenic nucleides) is a technique used for dating how long a surface has been exposed. Cosmic radiation is constantly streaming down on us and within minerals at the Earth’s surface it produces radioactive elements such as 10Be and 36Cl. The more of these we find, the longer the surface has been exposed to space. Apply this technique to a boulder dropped by a glacier and we can infer when the ice was last present.

BRITICE-CHRONO's area of investigation. Image from Chris Clark

BRITICE-CHRONO’s  8 transects. Image from Chris Clark

As part of BRITICE-CHRONO people are collecting hundreds of samples from all over Britain and Ireland. Guided by the BRITICE work, they are sampling features tied into different stages of the death of the ice sheet. The goal is to build up a large and robust dataset to understand how quickly the ice sheet shrank.

To the sea

When the ice sheet was there, sea levels were much lower (because the water was in the ice) and the ice left many traces on what is now the seabed.  BRITICE-CHRONO is using geophysical techniques to understand the distribution of glacial sediment on the seabed (sometimes on land too). Collecting cores from the sediments on the seabed also provides samples for dating. Cores from far offshore contain large rock fragments. These show that floating icebergs melted overhead, dropping stones scraped from land that became entombed within the ice sheet. Marine fossils offer their own special insights.

Offshore features. Image from Chris Clark.

Ice retreat features, both offshore and on. Image from Chris Clark.

There is a lot of interest in understanding features on the sea-bed – construction of offshore wind-farms requires better knowledge of what is out there. Also we now understand the potential for archaeology under these shallow seas. The British-Irish ice sheet may be long dead, but that doesn’t mean people never saw it1.

Recreating the ice sheet ‘in silico’

We know a lot about the world in which the last British ice sheet died. Ice from this time still exists, buried deep in the central parts of the Antarctic and Greenland ice sheets. It contains bubbles of air that once blew over a colder world. From this and other evidence, we have a good record of the climate spanning the period in question.

Scientists have built up sophisticated computer models of how ice sheets grow and die, in part based on research in Antarctica. Take known parameters, such as climate and topography and its possible to recreate an ice sheet ‘in silico’, to build up layers of ice within a computer and watch them disappear as the climate warmed.

BRITICE-CHRONO will build up a robust 4-D dataset of how the ice sheet retreated over time. Combining this with computer modelling will create a positive feedback, increasing our knowledge of how ice sheets behave, both in the past and the future.

Scientific Aims

BRITICE-CHRONO will test three main hypotheses, all of which are relevant to the goal of predicting the fate of modern ice sheets:

  1. The portions on ice close to sea level  collapsed rapidly (in less than 1000 years) but the rate of decay was slower for ice on land. Just how catastrophic was the death of the British-Irish ice sheet?
  2. The main ice catchments draining the ice sheet retreated synchronously in response to climatic and sea-level change. Was the retreat of the ice controlled entirely by external factors, or did the response vary over the ice sheet? This helps us understand the significance of local rapid retreat of ice in Antarctica. Does seeing it in one place necessarily mean it is happening to the whole ice sheet?
  3. The volume of ice-rafted debris depends on changes in ice sheet mass balance. Finding large stones in layers of offshore sediment is a direct record of where melting icebergs were found in the past. How is this linked to changes in the ice sheet? Does the amount increase when ice sheets grow, or when they retreat?

BRITICE-CHRONO is less than half way through its 5 years so it is too early to draw any conclusions. The goal is to produce a robust set of data so individual dates will not be published until the full picture is know. Last year saw a massive sampling effort that will continue this year. Although the focus is dating, put experts in the field and they will find new features such as a whole new suite of moraines in Scotland.

The consortium has a blog and is active on Twitter so you can join me in following their progress as they bring an ice sheet back from the dead.

Traces of glacial ice and water

There’s an immediacy to the study of the Quaternary (the last few million years) that is rather seductive. Most geology is (after John McPhee) studying ‘the former world’ but the Quaternary is close enough in time that it is still this world, capped by ice and full of familiar animals and human beings. We can study this period of time in tremendous detail using things – piles of sand, the pattern of the landscape, peat bogs – that are unlikely to be preserved in the geological record.

An outcrop of Irish gabbro tells us about conditions deep within the earth, but the mountain range, even the continent it formed in are all gone. The smooth shape of the outcrop and its covering of fine scratches were caused by the scraping of stones in ice, part of a massive icesheet that stretched across the British Isles. The ice is gone but it flowed over this hill, down that valley. On a chilly day it can feel like it only just left.

Stone moved by ice

One outcome of the great ferment of ideas in 19th Century Britain was the recognition that much of the northern British Isles were once covered by of thick sheet ice. One of the earliest recognised forms of evidence for these vanished ice sheets is found in the form of glacial erratics. These are pieces of rock, sometimes very large, dumped by the ice. The most useful sort come from a distinctive rock type, a granite intrusion perhaps, that allows you to know precisely where the erratic came from and so infer which way the ice was flowing. On the Yorkshire coast in England there are erratics from Norway1, showing that the ice flowed across what is now the North Sea.

Freshly dug glacial drift from Cheshire.

Freshly dug glacial drift from Cheshire.

Volumetrically the biggest record of glaciation is glacial drift. This is sediment that was moved and ground-up by the ice. It is a very jumbled, poorly-sorted sediment, with big blocks mixed up with sand and silt. If you find a sediment like this, you know there has been glaciation. This applies to ancient sediments just as much as recent ones.

Studying drift, people realised that things were quite complicated. A single place might have multiple layers of glacial drift separated by more normal sediments. They realised that term ‘Ice Age’ is a simplification; this was phenomena that pulsed. Outside of the Polar regions, the ice caps came and went many times, dancing in time with the stately precession of the earth’s axis.

Isoclinal folding in glacial sand and clay. Photo from 1921 courtesy of British Geological Survey. P249721 http://geoscenic.bgs.ac.uk/asset-bank/action/viewAsset?id=78063&index=55&total=56&view=viewSearchItem

Isoclinal folding in glacial sand and clay. Photo from 1921 courtesy of British Geological Survey. P249721

Sometimes, soft drift gets pushed around by advancing ice. Sometimes this results in beautiful folds, other times it puts sediments containing marine shells deep inland. 2. For this reason, the presence of drift is fairly uninformative. To make firmer conclusions about the most recent advance of Ice, we must turn to more subtle features.

Fainter traces

Glacial sediments aren’t laid down in thin even layers, but in various ways, both elegant and ugly. Valley glaciers often have moraines: piles of sediment at the end or sides that fell out of the melting ice. The same principal applies to Ice Caps, such as covered most of Northern Europe and North America. Successive belts or ridges of moraines can record the retreat of an ice sheet.

Drumlins are piles of glacial sediment that have been moulded by ice flow. They are very beautiful features, with an aerodynamic shape. They can look like the back of a huge whale, somehow rising out of the ground. Often found grouped together, their shape indicates the direction in which the ice was moving when last it was flowing.

A pod of Drumlins swimming in Clew Bay, Ireland. Photo from chrispd1975 on Flickr under CC. http://www.flickr.com/photos/8289745@N03/2384936935/sizes/l/

A pod of Drumlins swimming in Clew Bay, Ireland. Photo from chrispd1975 on Flickr under CC.

Glacial striations and polishing are common features found on land that was once under the ice. Stones in the ice slowly scratched their way across bed-rock. Asymmetric features known as roche moutonnée tell us the direction of ice flow.

A flock of Scottish roche moutonee (ice flowing to the right). Image from British Geological SurveyP008317 http://geoscenic.bgs.ac.uk/asset-bank/action/viewAsset?id=7032&index=14&total=182&view=viewSearchItem&movedBr=null

A flock of Scottish roche moutonee (ice flowed to the right). Image from British Geological Survey P008317

A common experience when walking one of the bigger mountains in Britain is to start in a valley filled with glacial till, perhaps with some moraine visible. Next a climb up a ridge shows lots of polished rock. Finally, the summit pyramid is covered in a great thickness of loose stone3. Between this summit block field and the scraped stone below is the trim line that captures the top of glacial erosion. Map out trim lines on multiple mountains and it tells you something about the vertical extent of the ice4.

Summit block field of Glyder Fawr in Wales. Image courtesy of British Geological Survey. P222636 http://geoscenic.bgs.ac.uk/asset-bank/action/viewAsset?id=29270&index=23&total=38&view=viewSearchItem

Summit block field of Glyder Fawr in Wales. Image courtesy of British Geological Survey. P222636

When ice melts, it turns into water. In my gin and tonic this is fine, but when the melting ice is 100s of metres thick, it will have a big impact. Around my home town of Macclesfield in England there are glacial lake deposits. They are sitting above the edge of the Cheshire Plain – there’s no way you could have a lake there today. The only way to explain this vanished body of still water is: it was dammed by the ice.

Other evidence of water flowing in odd ways if found in glacial meltwater channels. These look like small stream beds, but they have no stream today. Sometimes they flow along slopes or uphill for a time -evidence that when the water was flowing, the ice was still around.

If you were building a dam to make a huge lake and you proposed making it out of ice, you wouldn’t get far as an engineer, because at some point the dam will fail and all the water will come flooding out. This happened with melting ice in several places. The huge scoured landscape of the channeled scablands in Washington State, USA, are the biggest example, but my favourite is the Jutulhogget or ‘Giant’s Cut’ in Norway.

Jutulhogget http://commons.wikimedia.org/wiki/File:Jutulhogget_01.jpg

Jutulhogget  Image from Wikimedia Commons.

Of limited scientific use, but rather beautiful, iceberg keel marks are more evidence for glacial lakes.

Glacial keel-marks from Canada. Google Earth image.

Aerial view of glacial keel-marks from near Manitoba, Canada. Square lines are roads: see here for more details

 To the science

Knowing about these features really enhances your view of the world – it gives you a way to read landscapes and discover a world of ice so close in time we can almost touch it.  But the best thing about these features is that they tell us about the now-vanished ice. Modern researchers have mapped them to track the ice’s ebb and flow. They combine these maps with computer modelling, insights from active ice sheets and techniques for dating so advanced that they seem almost magical. Their goal is to predict the future. In the face of a changing climate, an ice-cap died in Britain 15,000 years ago. Understanding this process better may help us predict that fate of earth’s remaining ice caps. I’ll write more about this next….