What drives plate tectonics?

In the previous section we described how plate tectonics controls many things on the earth both today and in the past. Here we’ll describe the forces that drive the movements of plates, the patterns of how plates have moved and how computer modelling lets us understand the links between the deep mantle and the surface plates.

The earth is affected by gravitational forces from the sun and the moon. These move huge volumes of water every  day, causing the oceanic tides. They even cause small (but measurable) changes to the shape of the earth, the surface moving up and down by a few centimetres. As the earth and moon rotate quickly, these movements are quick and elastic, meaning the earth returns back to its original shape. It’s like a tall building swaying in the wind or during an earthquake. Elastic changes are where atoms move apart from each other, but the bonds within the material are not broken. Plate tectonics is like the entire building is moving, a permanent change caused by rocks slowly flowing or breaking.

Forces caused by plates

There are broadly two sets of forces that move the earth’s plates: those created by the plates themselves and those involving interactions with the mantle below.

Plate tectonics requires plates to be rigid and deform at the edges, they are strong enough that a force acting on one part of the plate pushes the entire plate. There are two sets of forces created at the edge of oceanic plates, one where they are created and another when they destroyed.

diagram of ridge push http://www.columbia.edu/~vjd1/driving_forces_basic.htm>

Ridge push is a force created at mid-ocean ridges where the flowing mantle (asthenosphere) rises up towards the surface. This occurs because the reduction in pressure allows melting and reduces the density of the material. As oceanic lithosphere (oceanic crust plus the stiff mantle material fixed to it) moves away from the ridge it cools and sinks as its density increases. This causes a slope and gravity acting on the higher ridge causes a horizontal force that pushes the entire plate horizontally. Some scientists calculate that a lot of the force pushing India into the Eurasian plate (creating the Himalayas) comes from the many ridges in the Indian ocean pushing on the plate.

Slab pull is a force associated with subducting oceanic lithosphere. Old cold oceanic lithosphere subducts because it’s denser than the surrounding mantle, therefore this negative buoyancy causes a force pulling on the edge of the plate. As it sinks it heats up, but also it is put under increasing pressure from the rock above it. This starts to drive metamorphic reactions that change minerals in the rock into different ones, more stable under the new conditions. Generally minerals with more compact, denser mineral lattices are stable and so the density of the rock is increased. The first transformation is called eclogitisation, but some oceanic plates reach the middle and lower mantle and so will undergo multiple transformations. 

We get a sense of the strength of this force by considering how these transformed subducted rocks – eclogites – reach the surface again. Eventually any subduction zone runs out of oceanic lithosphere, and the thin leading edge of the attached continent is pulled into the subduction zone where it is transformed at depth into eclogite. Contintental crust is much more buoyant and thicker than oceanic and resists subduction, meaning that subduction eventually stops. The deeper subducted oceanic lithosphere is pulling the other way and eventually it breaks in two. Once the force of the sinking oceanic lithosphere is removed, the buried edge of the continent, together with a stub of oceanic lithosphere, is quickly pulled back to the surface – bobbing back up like a balloon under-water.

The flowing mantle

Slab pull and ridge push are together one set of forces that act once plates are moving.  In addition forces will push onto plates from the convecting mantle below.

Convection is a physical property of bodies that can flow and are hotter below than above. Hotter material  is less dense than cool, so rises up and is replaced by cooler sinking material. You can see this sometimes in cooling soup, where patterns of flow affect the surface. 

Within the earth, sinking oceanic slabs will drag mantle material down with it and so become the downward flow part of convection. Similarly mid-ocean ridges are places where heat is released from the mantle and may correspond to an upward flow. However evidence from volcanic islands such as Hawaii suggests that mantle flow is more complicated than that. Most earth scientists believe in the existence of mantle plumes, long-lived flows of hotter mantle up towards the surface. The track of a mantle plume across the Pacific explains the pattern of the Hawaiian Islands. A mantle plume that caused volcanic activity in Greenland and the British Isles when the North Atlantic Ocean opened 60 million years ago is still active under Iceland, making that portion of the mid-Atlantic ridge above the surface.

These plumes appear to be unaffected by the passage of plates above them, and some scientists regard them as being fixed in location within the earth, being deep-seated structures. 

Seeing the effects of mantle convection on the surface movement of the plates is difficult. There are places on the earth, such as southern Africa which are much higher than we would expect. It seems that this is an area of upward mantle flow and this force is raising up the African continent, forming the high plateau that covers much of South Africa.

Supercontinents

Plate tectonic movements in the past show patterns where continents joined together into supercontinents, only to split apart again. The most famous supercontinent is called Pangea and it existed 270-200 million years ago. It contained all modern continents joined together. It’s breakup led to the creation of the continent shapes we are familiar with today. The Atlantic split apart the Americas from Europe and Africa. India, Antarctica and Australia were split apart by the creation of the Indian ocean. Also the Tethys ocean closed sending India colliding into Eurasia. 

Map of Pangea showing modern plate boundaries on it. Like https://www.worldatlas.com/articles/what-is-pangea.html. There are some wonderful examples on http://www.earthdynamics.org/earthhistory/Learn%20About%20Palaeogeography.html

Pangea formed late in the earth’s history. Before it the continents were separated from each other, but by different oceans that are now totally lost (the oceanic plates are now down in the mantle somewhere). We can trace the lines of the lost oceans by the traces of the collision when they formed or by patterns of fossils. Also slices of them called ophiolites may be found, lost within the centre of continents.

The line marking an ancient ocean can be found in countries around the North Atlantic. Called Iapetus, the join where it once was is often close to the modern Atlantic. By painstakingly  tracing traces of ancient oceans, combined with computer modelling, scientists have discovered other supercontinents older than Pangea. These are from times so far back that the shapes and names of continents are unfamiliar, but the processes are the same. Up to 13 supercontinents have been identified and named, going right back to earth’s earliest rocks. They appear to form and break-up at intervals of a few hundreds of millions of years. 

Whether or not the earth’s continents are all joined together or split into different parts affects many things. Continental shelves are great places for life, creating large areas of shallow water. If all continents are joined together, there is less continental shelf for creatures to live on. Cycles of supercontinent creation and break-up have been linked to changes in climate, patterns of the evolution of life, creation of continental crust, formation of ore deposits and many other things. 

Breaking up continents is not easy as continental lithosphere is stable and strong. The break-up of supercontinents seems to be linked to mantle plumes. A plume rising above a continent will heat it and push it up. Mantle flow away from the plume will start pulling the plate apart and the heat and volcanic activity make it easier to break. Some theories suggest that a supercontinent insulates the mantle below and eventually causes a hot plume to rise beneath it. This would explain why supercontinents form and are destroyed again and again in earth history.

Computer modelling goes “beyond plate tectonics”

The only real way to understand the complicated patterns of flow in the earth is by using computer modelling. Only computers than track the different types of force and the fact that this is all happening on a spherical earth. They can be used to try and bring together the theory and the real-life observations to reproduce patterns of plate tectonics over the history of the earth.

In building the models, scientists can use a lot of equations that describe the physics of how hot rocks flow – how they deform and how convection works. They also ensure that all the forces balance, that the earth remains the same size and that the surface plates are not spinning around the world. 

Into this theoretical model they add all the observations that led scientists to produce the theory of plate tectonics in the first place. Geological evidence of continental drift shows when continents were joined or moved apart. Magnetic stripes show how ocean basins opened, seismic tomography can see ancient subducted plates and help calculate where subduction zones were in the past. Techniques like palaeomagnetism show what latitudes rocks were at in the past.

Computer models now include all of this information and link it together in a consistent way. These models can describe both the movements of tectonic plates and patterns of ancient mantle plumes. Some say this is moving beyond plate tectonics and into a deeper understanding of how the entire earth works, not just the surface.

One example of the power of these models comes from studies of the distribution of diamonds at the surface of the earth. Diamonds form deep within the mantle, potentially over much of the earth, but they only come to the surface in particular places. Diamonds reach the surface within special types of volcanic eruptions called kimberlites. These are only found in very old parts of continents in Africa, North America, Australia and Asia. Deep under old continents, there is a thick and stable layer of cold and strong mantle attached to the crust. Kimberlites form when this old material is heated and molten rock rich in carbon dioxide is formed. This super-light material quickly shoots to the surface containing fragments of mantle rock within it, sometimes with diamonds. Computer modelling of past plate movements suggested that kimberlite eruptions occur when old continental lithosphere is heated by mantle plumes rising from below. Furthermore, mantle plumes tend to rise from the edges of mysterious structures at the core-mantle boundary called LLSVPs.

<<example of results of this modelling. first diagram in https://www.pnas.org/content/111/24/8735/tab-figures-data

This particular research is fairly recent and like most new studies is not accepted by all scientists. But it illustrates the power of these computer models. If it correctly explains where and when kimberlite eruptions occur, it could help mining companies find new kimberlites and so find new diamond mines.

These computer models are never complete. Scientists using computer modelling of complex systems like climate or the earth’s interior joke that all models are wrong, but the best ones are useful. They understand that new research will improve on existing models, but ones today can increase our understanding and suggest new areas of research.

First publication by Xiaoduo Media in Front Vision. Front Vision is a Chinese online science magazine for children. My original English text produced with permission.

Plate tectonics

Deep in the earth, solid rocks can flow, but the surface layers are cold rigid plates that move across the surface. This means that continents are constantly drifting across the earth and oceanic crust is being created and destroyed.

Plate tectonics is one of the most successful scientific theories of the Twentieth Century. It explains the major structures of earth’s surface and interior, the distribution of earthquakes and volcanoes, location of coal and mineral deposits, even where we find different types of fossil. 

With modern global positioning satellite technology, we can directly measure the movements of the plates. They move about the speed your fingernails grow, a few centimetres a year. This isn’t fast on human time-scales, but on geological time-scales it means things are always changing. A geographical map of the earth from 100 million years ago looks very different and from 500 million years it’s unrecognisable. This is still only about 11% of the earth’s history.

Wegener’s theory of continental drift explained geological evidence from continents very well, but by the end of the 1950s it still wasn’t fully accepted for two main reasons. Firstly scientists knew the deep earth was solid but didn’t yet realise that hot solid rock can flow. Secondly our understanding of the rocks under the deep oceans was very limited.

Discovery of sea-floor spreading

During the second world war, new technologies were developed to measure the earth’s ocean depths as a way of detecting enemy submarines. After the war the US Navy funded surveys of the ocean depths to continue this work. Marie Tharp, a scientist working in the USA was involved in mapping out data from these surveys. In 1952 her mapping she identified a huge ridge down the middle of the Atlantic Ocean with a narrow valley at the very top. She interpreted this as a place where the earth was moving apart and linked it with the then controversial theory of continental drift. 

Many didn’t believe her, but soon huge quantities of data were collected confirming her idea. The surveys of the ocean also measured the earth’s magnetic field, as the Navy hoped it would help with detecting steel submarines. These data showed a clear pattern of stripes parallel to the mid-ocean ridges identified by Marie Tharp. 

Rocks cooling on the sea-floor contain magnetic minerals that capture a record of the earth’s magnetic field. This affects modern measurements of magnetism made above the rocks. The stripes are explained because the earth’s magnetic field changes back and forth over time (the Poles switch round). As crust is gradually created at mid-ocean ridges and drifts apart it slowly records the changing magnetic field. 

DIAGRAM SHOWING SEA-FLOOR SPREADING https://en.wikipedia.org/wiki/Vine%E2%80%93Matthews%E2%80%93Morley_hypothesis

The idea of ‘sea-floor spreading’ and that these mid-ocean ridges were creating new crust was developed in the early 1960s. For the Atlantic it was shown in 1965 that if you remove these stripes one by one and bring the two sides back together, the continents fit closely together. In plate tectonic theory these types of boundary where plates are moving apart are known as divergent. Mid-ocean ridges are not straight lines, but are offset by breaks in the oceanic plates called transform faults. The ridges are not just found within the Atlantic, but also within the Indian and parts of the Pacific oceans.

Discovery of subduction zones

In the 1960s governments invested in a world-wide network of seismometers as a way of tracking underground nuclear tests. The data captured transformed our understanding of the earth as it greatly increases our understanding of earthquakes happen.

Earthquakes are formed where rocks break and move along large surfaces called faults. Earthquakes in the Atlantic are focused on the mid-Ocean ridges, caused by the stretching and movement of rocks in the rift zone.  But the places where earthquakes are most common and strongest are found not in the Atlantic but around most of the Pacific and mark not where crust is made but where it is destroyed.

The earth isn’t growing bigger, so if oceanic crust is being made in the Atlantic, it must be being destroyed elsewhere. The Pacific oceanic plate is surrounded by subduction zones where lithosphere (oceanic crust plus attached mantle that together forms the plate) sinks down into the earth’s mantle. These are a type of convergent plate boundaries. At the surface subduction zones can be recognised by deep trenches formed where the oceanic lithosphere bends down. The Marianas Trench is the deepest, but they exist all around SE Asia and also down most of the west side of the Americas. 

As the oceanic lithosphere sinks into the earth there are sudden slips and jolts as it pushes its way down which cause large earthquakes that are very dangerous. Once scientists had enough data, they could see in the patterns of earthquakes the location of the plate as it sinks into the earth. The earthquakes were shallow near the trench and deeper further away forming a surface of earthquakes known as a Wadati-Benioff zone.

<<< Diagram of earthquakes coloured by depth. E.g. http://www.isc.ac.uk/ home page >>

This surface marks roughly the top of the oceanic plate and earthquakes form as it forces its way deep down into the earth. As it sinks it also heats up and water within the plate is forced out into the mantle above, which melts causing volcanoes at the surface.

diagram of subduction zone, e.g. https://en.wikipedia.org/wiki/Subduction

Volcanoes exist all around the Pacific, the so-called ‘ring of fire’, from New Zealand, through the Philippines, Japan, Alaska, Canada, USA and down through central and South America. Armed with a global set of data on earthquakes, scientists were able to trace subduction zones across the world and in turn show that the ring of fire volcanoes all sit above them.

In the early 1950s, Marie Tharp was not  believed as continental drift was so controversial. But by 1967 the ‘plate tectonics revolution’ was complete. In that year, models showing the earth’s surface as 12 rigid plates moving across the surface were published. These explained all of the features and evidence we’ve mentioned so far in a consistent and powerful way. Plate tectonics theory now underlies all of modern Earth Science.

https://en.wikipedia.org/wiki/Plate_tectonics#/media/File:Plates_tect2_en.svg

Plate tectonics around the world

 Looking at a map of plates and a topographical map of the world together is very interesting. Let’s go on a tour of the world and show how plate tectonics explains many things.

The south-western edge of Indonesia is a lovely example of a subduction zone. It has a deep trench, a clear Wadati-Benioff zone and a line of volcanoes that form the islands of Indonesia. This subduction zone caused an earthquake that in turn created a tsunami in December 2004 that killed 227 thousand people in 14 countries. The Australian plate is being subducted under a corner of the Eurasian plate but oceanic crust is also being created in a ridge down the middle of the Indian Ocean. 

Patterns of plate movement are complicated. The earth is a sphere and plates are rotating on it, meaning that relative plate movements are different in different places and don’t necessarily make sense on a flat map. In the USA the Pacific NorthWest has subduction and volcanoes where the tiny Juan da Fuca plate is being subducted. But nearby in Southern California the plates are moving past each other (a transform plate boundary) so there are earthquakes but no volcanoes. The city of San Francisco was destroyed in 1906 by an earthquake on this plate boundary.

In some subduction zones the sediment sitting on top of the oceanic crust is scraped off and piles up above the subduction zone in a structure called an accretionary wedge. In the Caribbean the West Indies consists of two types of islands. First there is a curved line of volcanic islands stretching from Anguilla down to Grenada caused by subduction of the Atlantic under the Caribbean plate. The island of Barbados is linked to these islands culturally but sits further east. It’s is not volcanic but is a place where the accretionary wedge forms an island. 

In some subduction zones oceanic lithosphere is sinking down below a different piece of oceanic lithosphere, rather than continental. Here the volcanoes form chains of islands and sometimes build up thick piles of crust called volcanic arcs. A lovely example of an arc of volcanoes is found in the Aleutian Islands in the North Pacific. 

Eventually oceanic islands and arcs enter a subduction zone where they are far too thick to be subducted. They are scraped off and added to the other plate in a process called accretion. Japan and Alaska are both places where volcanic arcs have been added to continental crust multiple times in the past. This process is one way continental crust may be created.

Continental tectonics

Continental crust is very different from oceanic crust. All land on earth sits on continental crust, with the exception of volcanic islands like Iceland or Hawaii. It is different in composition, being much richer in Silica. It has a lighter density and is never subducted. It is not involved in sea-floor spreading or subduction, but it is affected by plate tectonics and not just because continents drift across the surface.

Continental crust is affected by all three types of plate boundary. The East Africa Rift is where a divergent plate boundary is being started. Two parts of Africa are being pulled apart, with the continental lithosphere being thinned and volcanic activity occurred. Within about 10 million years this will become a true plate boundary and oceanic crust will start forming in the wider rift as the fragments of continent completely break apart.

Transform plate boundaries are found in California, but also down the middle of the South island of New Zealand. Convergent plate boundaries involving continents are of two types. The western edge of South America is an example of oceanic crust converging with continental, where subduction causes volcanoes but also a large mountain range called the Andes.

Plate boundaries where two continents converge cause large mountain ranges. There used to be an oceanic plate called Tethys sitting between what is now the Eurasian plate (to the north) and the African and Indian plates. After this oceanic crust was fully destroyed, continents collided forming mountain belts. The Himalayan mountains were formed by India colliding into the Eurasian plate and the Alpine mountain chain in Europe, plus mountains in Turkey, Iraq and Iran from Africa hitting Eurasia. The Tethys oceanic crust was a complicated shape and some of it remains within the Mediterranean sea.  

Plate boundaries within continents are not sharp or simple. The effects of the impact of the Indian and Eurasia plates extends all the way through China into Siberia. Plate tectonics describes rigid oceanic plates with sharp boundaries very well. Sometimes the term continental tectonics is used to describe the different ways in which continents behave.

At the same time as evidence to prove plate tectonics was building up, some scientists were thinking about how this theory could explain the earth’s history. They started to interpret old rocks in terms of plate tectonics. Big differences in fossils from locations now close together can indicate that an ancient ocean once existed between them. Slices of oceanic crust, known as ophiolites can be found within continents and also indicate where a now vanished ocean basin once was. Patterns of metamorphic and igneous rocks can also be used to trace ancient subduction zones (blueschist and eclogite rocks), volcanic arcs or contintental collision zones. 

A geologist called Tuzo Wilson proposed the idea of a regular cycle, where oceans open and close again and again. Close around the edge of the North Atlantic, in both Europe and America there are the traces of an ancient continental collision zone called the Caledonides that marks where a now vanished ocean called Iapetus was destroyed. Some time in the future the Atlantic ocean will close and another collision zone be formed close to the old one.

Plate tectonics explains the modern earth very well and explains most of the earth’s history too. Modern research into plate tectonics looks to explain where it may or may not apply, for example on other rocky planets and the very early earth. 

Mars and Venus are similar to earth in many ways, but neither have plate tectonics. The explanation may be simple: Mars be too small and cold for the rocks to mantle to flow properly. Venus may be too hot – it’s atmosphere is really effective at insulating the planet. Other explanations talk about the importance of water as a way of lubricating the subducting oceanic plates.

Another debate is around when plate tectonics started on earth. The early Earth had an internal temperature that was much hotter. For oceanic crust to subduct, it must be rigid enough to be pushed into the mantle and so if crust and mantle are hotter (like Venus now or the Earth in the distant past) then plate tectonics may not be possible. Instead blobs of crust sink down and hot plumes rising up are much more important. Rocks older than about 2.5 billion years old are different in many ways from those created now and maybe earth then was more like Venus now. Scientists are still debating these topics.

First publication by Xiaoduo Media in Front Vision. Front Vision is a Chinese online science magazine for children. My original English text produced with permission.


A refolded fold from Scotland

Standing on the shores of Loch nan Uamh I was feeling distracted. There was a lot to attend to. Behind me was a flat strip of grass, growing on a beach deposit now left high and dry by the crust’s slow straightening of its spine after the weight of a huge ice cap melted away. Perched above the fossil beach was a Victorian country house where incredibly brave people from across Europe had trained before being dropped into Nazi-occupied Europe to wreak righteous havoc.  To my left sits an Iron age hill fort and straight ahead a sublime view demanding I pay attention to its wild empty peninsulas, small forested islands and wide rolling sweep, all under a cloudless sky. The drift of my thoughts towards why this landscape is so wild – heartless landlords and ‘improvement’ leading to clearance and gaelic songs sadly sung on a ship to Canada – is interrupted by my family. Not unreasonably they want me to stop staring into space and attend to their games on the rocky beach.

Fatherly duties still leave time for me to assume the geologist’s pose and stare at the ground, assessing the cobbles at my feet. I snaffle a nice bit of granite first. Then a nice piece of pinkish folded quartzite catches my eye and slips into a pocket to be forgotten as the glorious day rolls on.

Let’s have a look at it.

You can see how it caught my eye. Just short of a billion years ago it was formed as different layers of sand, some nearly pure quartz, others more muddy. It’s since been heated and squashed within the earth. The quartz is still quartz but the mud is now shiny mica.

What were once flat layers 1  are now folded. The pattern we see is the intersection of a 3D fold with the complex rounded surface of the pebble. Call the image above as a view of the top of the pebble. Let’s rotate it round (it sits beautifully in the hand, like a heavy cricket ball) and look at one of the sides.
These sigmoidal shapes are classic folds. You can almost visualise the rock sitting in a clamp being squashed horizontally to turn flat lines into wavy.

Rotate the sample 180 degrees around  a vertical axis to see the other side of the sample and you see the same folds coming out of the other side of the rock.


Looks simple. But appearances can be deceptive. Let’s rotate the sample to look at its underside (the side my thumb is holding in the picture above).


At the top of this photo you can see some of the edge in the preceding picture. So the folds we’ve seen before have their crests and troughs running vertically through the image. You can see that, but not just that. The darker layer sitting in the middle of the shot runs from top to bottom, marking a trough in the folding, but it is forming a rough cross shape, not a single line as I would expect.

There are two sets of folding in this sample. I’ll try and annotate that for you.

In red I’ve drawn most of the troughs and peaks of the main folds. The ones we’ve seen now from three angles. The blue line shows what I reckon is an earlier fold, where the crest of the trough is itself folded by the red folding.

Here’s a view looking at the side again, the edge on the right side above. It’s at an angle of 90 degrees to the other side views. We are looking down on a trough shape made by the earlier blue folding, now bent around by the red folds.

Here are some oblique views in the same direction, that makes the saddle shape formed by the two sets of folding more obvious. This stuff is hard to see from photos. It’s easier to visualise the three-dimensional patterns when you’ve got the sample in your hand, but even then I didn’t notice (distracted as I was) the full complexity when I first picked it off the beach.

The rock sample is probably from the local Moine rocks, where refolded folds are common. There’s a bigger and more complicated example in the hills above where I collected this a tale of past oceans opening and closing, lost continents forming and splitting. But we’ll come to this in a future post.

Ultrafast eclogitisation through overpressure

My blogging torpor has been ended by a super-interesting new paper that links together many of my favourite topics. It includes eclogites, metamorphic petrology, ultra-fast metamorphism, determining timescales via diffusion profiles, tectonic overpressure and even the Grampian-Taconic orogeny and opens up new avenues of research. What more could I ask for from a scientific paper?

The Rocks

The paper, “Ultrafast eclogite formation via melting-induced overpressure” by Chu et al. has just been published. It’s based on a very close study of a set of rocks from Connecticut in the USA. They are part of the Taconic orogeny, (also seen in Connemara, Ireland, my old field area) which was caused by an Arc colliding with a continent.

The particular location is within a tectonic slice and consists of felsic paragneisses (metamorphosed muds and sandstones) containing lenses of mafic and ultramafic rock (metamorphosed gabbro). The gneisses are migmatitic – they were partially melted. The whole area of high-grade rocks is bounded by mica schists, within 50m, suggesting the heating of the rocks was localised.

The mafic lenses are eclogitic – they contain an eclogite facies assemblage of minerals that formed under high pressure.  As is common in eclogites, some of the peak minerals have retrogressed (changed) back into fine mixtures of lower pressure minerals called symplectites. The phengite and omphacite are now symplectite pseudomorphs but garnet (Twitter’s 5th most popular mineral) remains itself and contains some invaluable information.

The chemical analysis

The paper describes estimates of the conditions of metamorphism, derived from various forms of analysis. The garnets are the key to this, as they show a wide range of different compositions. Since they grow outwards, the change of compositions from the core captures changing metamorphic conditions as the garnet grew. The image below is a map of the amount of particular chemical elements within the garnet. The different colours represent different amounts and since the chemistry of the garnet depends on the pressure and temperature while it grew, this gives us a lot of information.

Part of figure 4 showing sharp and complex chemical zoning in garnet

Part of figure 4 showing sharp and complex chemical zoning in garnet

As marked on the image above, parts A-C record heating at around 8 kbar (typical crustal depths) from 660 to 790°C, then D represents eclogitic conditions of 14 kbar and E a return back to 8 kbar.

Speed

Garnets that have spent a long time at high temperatures lose their chemical zoning due to diffusion. Since we understand the speed at which diffusion works, we can use chemical zoning in minerals to estimate the speed of metamorphic processes. Look at the images above and you’ll notice that the boundaries between the different domains are quite sharp. Using two sets of forward modelling (one of the diffusion profiles and another of the garnet growth) they conclude that the pressure increase (C-D above) took only 500 years. The pressure decrease (D-E above) also took only 500 years. These are not the sort of timescales geologists are used to dealing with. I’ve been to educational establishments that have lasted longer than 500 years – it’s no time at all.

These dates cannot be explained by normal models of eclogite formation, which involve subduction of material and eventual return to shallower depths. Rates of subduction are measured in cm per year, but to explain the rate of pressure increase this way would require rates of 30m per year.

How does pressure change so fast?

The usual assumption in metamorphic petrology is that the pressure recording by the minerals is lithostatic pressure – that caused by the weight of rocks above. This is useful as it allows you to track the rocks passage into and out of a subduction zone or mountain belt and so link metamorphic P-T estimates to tectonic models. A number of recent papers have started to challenge this assumption. Their approach varies, but all suggest that rocks can experience high pressures without being buried to great depth.

What’s so great about Chu et al. is that is provides direct evidence of this happening and offers an explanation as to how it happened.

Burying rocks at 30m a year is not credible, so if we accept their estimates for the speed and amount of pressure increase (it persuades me, but more knowledge people than me may disagree) we must look for ways of generating high pressure without piling up more rocks on top.

Chu et al.’s explanation takes us back to the unusual location of these rocks, within a narrow active shear zone surrounded by colder rocks. They see rocks as being rapidly heated due to strain heating along the shear zone. This one of the mechanisms invoked by those arguing that localised and rapid metamorphism is more common that we thought. The narrow zone of hot rocks is surrounded by colder more rigid walls. As the rocks start to melt, the sudden volume increase causes an ‘autoclave’ effect, a sudden local deviation above lithostatic pressure. This causes the rapid growth of eclogitic minerals with the mafic pods. Soon the melt escapes or crystallises, reducing the pressure back to normal.

Part of figure 9, showing the model of transient overpressure due to partial melting

Part of figure 9, showing the model of transient overpressure due to partial melting

What does it all mean?

This paper adds a fascinating petrological argument supporting the theoretical studies suggest that overpressure within metamorphic rocks is possible. No longer can the mere presence of high-pressure minerals necessarily indicate the rocks was buried to great depths.

As the authors say, it does not invalidate most of what we know about eclogites. The mechanism described does not apply to the many ultra-high pressure terranes like Western Norway where large volumes of eclogitic rocks exist – these surely did get stuffed deep into a subduction zone.

My first thought was of the Glenelg eclogites in Scotland. This is a small area of eclogite within a high strain zone which makes very little tectonic sense. Perhaps this is a candidate for being formed by local overpressure? As far as I can tell they aren’t associated with migmatites, which makes them not directly analogous. But the point is that there is a new possible interpretation for them, new avenues of research. That’s what makes this paper so interesting to me.

Please read it, and if you think it’s wrong, let me know.

Chu, Xu, et al. “Ultrafast eclogite formation via melting-induced overpressure.” Earth and Planetary Science Letters 479 (2017): 1-17.

Update: another possible candidate for this effect in Scottish rocks is within the Central Highlands Migmatite Complex. See brief description and my write-up of a discussion of the significance of these rocks.