Currently browsing tag


The effect of antecedent soil moisture conditions on green roof runoff water quality and quantity

Lab alumna and 2015 REU student Jillian Sarazen is presenting her work this week at the 59th Annual Conference on Great Lakes Research, affectionately known as IAGLR. Jillian graduated from Oberlin College in May. Congratulations on both fronts, Jillian!

The effect of antecedent soil moisture conditions on green roof runoff water quality and quantity.


1. Oberlin College Department of Biology, Oberlin, OH, 44074, USA;
2. Kent State University Department of Biological Sciences, Kent, OH, 44240, USA;
3. Kent State University Department of Geology, Kent, OH, 44240, USA;
4. Kent State University Department of Geography, Kent, OH, 44240, USA.

One of the many benefits of green roofs is that they reduce the amount of stormwater runoff as compared to normal roofs, however they can negatively impact water quality. This study was conducted at the three year-old green roof on Cleveland Metropark’s Watershed Stewardship Center in Parma, Ohio. The objectives were to (1) measure green roof runoff quantity and quality of phosphate (PO43-), nitrate (NO3-) and ammonium (NH4+) concentrations during rain events and (2) relate antecedent soil moisture conditions to water quality and quantity. We sampled sequential water samples (Teledyne, ISCO) during four summer 2015 rain events that varied in size and intensity. We measured soil moisture at high temporal resolution using four logging sensors and two to three times per week at 33 sampling locations using a handheld probe. Soil moisture increased immediately upon commencement of rainfall. Spatial data show a response in the soil to rain events with high variability, but no clear patterns. Phosphate export increased linearly with total outflow, while ammonium and nitrate export did not show clear relationships with outflow quantity. Results of our study show that there is a trade off between ecohydrologic function and water quality, as indicated by leaching of excess nutrients in the green roof outflow.

Keywords: Water quality, Green Roof, Urban watersheds, Green Infrastructure, Lake Erie.

Soil moisture dynamics and their effect on bioretention performance in Northeast Ohio

Most members of the Watershed Hydrology lab chose to go to GSA this year, and we had a blast sharing our science and enjoying Vancouver and surrounding areas. But now we are sadly missing out on the American Geophysical Union (AGU) meeting going on this week. Fortunately, a small piece of our work will be represented by outstanding summer REU student Sidney Bush. She’s giving a poster on Thursday afternoon in the Moscone West poster hall at H43F-1017. Here’s her abstract:

Soil moisture dynamics and their effect on bioretention performance in Northeast Ohio

Sidney A. Bush1, Anne Jefferson2, Kimberly Jarden2, Lauren E Kinsman-Costello2 and Jennifer Grieser3, (1)University of Virginia Main Campus, Charlottesville, VA, United States, (2)Kent State University Kent Campus, Kent, OH, United States, (3)Cleveland Metroparks, Parma, OH, United States

Urban impervious surfaces lead to increases in stormwater runoff. Green infrastructure, like bioretention cells, is being used to mitigate negative impacts of runoff by disconnecting impervious surfaces from storm water systems and redirecting flow to decentralized treatment areas. While bioretention soil characteristics are carefully designed, little research is available on soil moisture dynamics within the cells and how these might relate to inter-storm variability in performance. Bioretentions have been installed along a residential street in Parma, Ohio to determine the impact of green infrastructure on the West Creek watershed, a 36 km2 subwatershed of the Cuyahoga River. Bioretentions were installed in two phases (Phase I in 2013 and Phase II in 2014); design and vegetation density vary slightly between the two phases. Our research focuses on characterizing soil moisture dynamics of multiple bioretentions and assessing their impact on stormwater runoff at the street scale. Soil moisture measurements were collected in transects for eight bioretentions over the course of one summer. Vegetation indices of canopy height, percent vegetative cover, species richness and NDVI were also measured. A flow meter in the storm drain at the end of the street measured storm sewer discharge. Precipitation was recorded from a meteorological station 2 km from the research site. Soil moisture increased in response to precipitation and decreased to relatively stable conditions within 3 days following a rain event. Phase II bioretentions exhibited greater soil moisture and less vegetation than Phase I bioretentions, though the relationship between soil moisture and vegetative cover is inconclusive for bioretentions constructed in the same phase. Data from five storms suggest that pre-event soil moisture does not control the runoff-to-rainfall ratio, which we use as a measure of bioretention performance. However, discharge data indicate that hydrograph characteristics, such as lag time and peak flow, are altered relative to a control street. This analysis suggests that street-scale implementation of bioretention can reduce the impact of impervious surface on stormflows, but more information is needed to fully understand how soil moisture of the bioretentions affects inter-storm variability in performance.

Sidney’s poster is part of a session on “Water, Energy, and Society in Urban Systems” that Anne nominally helped convened. Check out all of the stimulating morning talks and awesome afternoon posters on Thursday. The rest of us are sorry to be missing it, but if *you* are in San Francisco at AGU this week, don’t miss out on all the great science in the session.

Research Experience for Undergraduates focused on Stream Restoration

Collaborator Jason Vogel at Oklahoma State asked me to spread the word about their cool new REU on stream restoration, starting this summer. Application deadlines are February 15th and the program runs May 26 – July 31st. For more information:

A Research Experience for Undergraduates (REU) Site will provide seven undergraduate students a research experience over a ten week period during the summers of 2015-2017. The research will include studies in hydrology, geosciences, and biology at the Cow Creek Stream Rehabilitation Site on the Oklahoma State University (OSU) campus. The opportunity to study streams at a site on a University campus recently rehabilitated is unique. The central theme of the program will be discussing ways to rehabilitate streams, and specifically evaluating natural channel design approaches through process-based investigations. Billions of dollars are spent annually on stream rehabilitation across the United States. Many current stream rehabilitation projects use natural channel design concepts, which are often criticized. The alternative is a complex, process-based analysis of the dynamic system and impact of stream modifications on the hydraulics, sediment transport, and biological community. This proposal hypothesizes that future restoration approaches will most likely resemble a morphed combination of natural channel design and process-based techniques. Students will participate in research projects quantifying the role of vegetation on streambank erosion, documenting the influence of in-stream structures on retention in the stream, evaluating the effect of sediment on fish, using aquatic macroinvertebrates to assess streambank modifications, evaluating plant diversity response, and studying vegetation impacts on stream temperature.

REU at Kent State – Come work on aquatic-terrestrial linkages in urban ecosystems

Kent State and Holden Arboretum are hosting a summer REU (Research Experience for Undergraduates) focused on aquatic-terrestrial linkages in urban impacted ecosystems. Lots of great faculty in geology, biological sciences and other departments are participating, and I would be thrilled to mentor a student through the program. The program will run from June 1st to August 8th, 2014, and applications are due February 17th.

Kent State University and The Holden Arboretum invite applicants for a 10-week summer research training program. Students enrolled in this program will conduct mentored research into the importance of terrestrial-aquatic linkages in the ecology of urban-impacted ecosystems. This research will be designed to examine how human activities such as urbanization, industry, farming, mining, and recreational activities affect the way terrestrial and aquatic ecosystems interact. Projects might compare sites with and without urban impact to examine: nutrient cycling in soils and streams, microbial community composition in forest soils and stream sediments, plant-soil interactions, how shredders modify terrestrial leaf litter input to stream ecosystems, the effects of terrestrial pollutants on aquatic microbial community structure and function, how terrestrial and aquatic biogeochemical cycles are affected by human activities such as acid precipitation and land-use change. Along with learning about hypothesis generation, project design, and ethics in research, students will receive additional training archiving data in a geospatial database and will participate in weekly seminars.

To find out more about the program, look at all of the possible mentors and cool projects, and begin the application process, check out the website here.

Fantastic undergraduate research opportunity at Hubbard Brook Experimental Forest

Just the messenger about this great opportunity to get hydrology research experience at one of the pivotal locations for the development of hydrologic science working with fantastic colleagues:

Hillslope hydrology component of the Hubbard Brook REU:

We are seeking applicants for an REU position at the Hubbard Brook Experimental Forest in New Hampshire.  The program is a multidisciplinary project where students participate in a research project and also engage in outreach projects designed to help develop skills in communicating ecosystem information to broad audiences. The program runs from May 29 through August 7, 2013 and all students are expected to be in attendance on the start date. Students receive a $5000 stipend for the 10-week program, as well as free housing. Food costs are paid by the participants and run approximately $42/week. Students live at Hubbard Brook Research Foundation’s Pleasant View Farm adjacent to the Hubbard Brook Experimental Forest.

The overall objective of the hillslope hydrology project is to document varying flowpaths that water takes through soils in its journey through hillslopes on its way to streams. An REU student will work closely with a team with graduate students installing and operating tensiometers and pore water samplers, and collecting and characterizing soil samples. The approach of this project follows the emerging discipline of hydropedology, with implications for understanding water quality regulation and spatial patterns in forest habitats. (Mentors: Dr. Scott Bailey, US Forest Service and Dr. Kevin McGuire, Virginia Tech)

More information on the program and application information can found at The application deadline is February 8th.

Another Water REU at Virginia Tech

Dynamics of Water and Societal Systems

An Interdisciplinary Research Program at the Virginia Tech StREAM Lab

2012 NSF Research Experience for Undergraduates (REU)

June 4 – August 10

Virginia Tech, Blacksburg, Virginia


Application will be Reviewed Starting February 29th, 2012


Applications are invited from qualified and motivated undergraduate students (rising sophomores, juniors and seniors) from all U.S. colleges/universities to participate in a novel, interdisciplinary, 10-week summer research program at Virginia Tech centered within the university’s Stream Research, Education, and Management Laboratory (StREAM Lab). All REU fellows will serve within several interconnected group projects dealing with issues of water sustainability, ecosystem resilience, and environmental stewardship. As our REU fellows address their specific research questions, they will be mentored by interdisciplinary faculty groups, providing them with a rich and unique perspective on their specific target issues, as well as a more mature and holistic view of watershed management.

U.S. Citizens or Permanent Residents are eligible to apply. Successful applicants may be current students in a number of relevant engineering, science, and social science undergraduate disciplines. The research program is funded through the National Science Foundation – Research Experiences for Undergraduates (NSF REU) program. The 10-week internship will begin on June 03, 2012 (arrival day) at Virginia Tech and end on August 10, 2012 (departure day). The research internship includes a stipend of $4000, subsistence costs (dormitory and most of the meals) and round trip travel expenses (up to $500) per person to Virginia Tech. In addition, expenses will be covered for travel to a conference, most likely the American Ecological Engineering Society conference in Syracuse, NY (June 7-9).

For application materials and more information:

Application materials should be submitted via email to:


Research Activities: Although specific research questions will differ for each cohort of fellows, this REU will broadly focus on introducing students to the complex interactions between the natural Stroubles Creek watershed system and the upland anthropomorphic influences of the Blacksburg and Virginia Tech communities. Fellows will also be encouraged to develop critical thinking and communication skills through a series of “Society and Science” evening lectures and discussions designed to promote cross-disciplinary interactions and networking, and through the guided design of outreach activities intended to engage minority middle school students in summer science camps.

We will begin reviewing application submission on February 29, 2012. Successful applicants will be informed by March 19, 2012. Please contact Dr. W. Cully Hession (540-231-9480; or Dr. Leigh Anne Krometis (540-231-4372; for more information or with any questions. [NSF-Engineering Education and Centers #1156688]

Water Science and Engineering Research Experiences for Undergraduates at Virginia Tech and Florida

Undergraduates – Are you looking for a way to gain research experience and get an edge on grad school preparedness? Are you interested in water? Then check out these two opportunities to spend the summer studying water science and engineering.  I know a couple of faculty at Virgnia Tech, and I can highly recommend working with them. The program at Florida sounds good too. 


Virginia Tech, Blacksburg, Virginia
Application Deadline February 24, 2012

Applications are invited from qualified and motivated undergraduate
students (rising sophomores, juniors and seniors) from all U.S.
colleges/universities to participate in a 10-week (June 03-August 10,
2012) summer research in interdisciplinary water sciences and
engineering at Virginia Tech. We have already graduated 36 excellent
undergraduate researchers from our site during 2007, 2008, 2009, and
2011. Application materials, details of ten Research Mentors along
with possible research projects and other program activities are
posted on following website:

Example Projects:

Natural Attenuation of Contaminants in Groundwater
Hydrology and Hydraulics Impacts on Ecological Health of Surface Waters
Bacterial Contamination of Water Distribution and Plumbing Pipelines
Water Quality for Human Health and Aesthetics
Investigation of Occurrence and Fate of Organic Contaminants in a
Watershed Impacted by Urban Development
Hypolimnetic Oxygenation:  Coupling Bubble-Plume and Reservoir Models
Design and Application of a Real-Time Water Monitoring System
Water-Energy Nexus and Decentralized Water Infrastructure
Bioremediation of Oil Spills
Analysis of Patterns of Macroinvertebrate Density and Distribution
in Strouble’s Creek

Deadline for application submission is February 24, 2012. Successful
applicants will be informed by March 12, 2012. Please contact Dr.
Vinod K Lohani (phone: (540)231-9545; FAX: (540) 231-6903; for questions

The University of Florida invites applications for an interdisciplinary research program in water resources from undergraduate students in their sophomore, junior, and senior years, majoring in engineering or related fields in science and math. Selected students will conduct hands-on research projects for eight weeks, involving field/laboratory experiments, theory, and computer modeling. The students will be distributed across Florida during the program. This unique program combines research and extension experiences in water resources to help convey research results for better water management.
PROGRAM: June 11 – August 3, 2012. Includes all travel expenses, stipend, housing, and meals.
ELIGIBILITY: US citizens or permanent residents who are in their sophomore/junior/senior year of study. Students at non-research institutions and those who are underrepresented in engineering and science are particularly encouraged to apply.
CONTACT: Mr. Daniel Preston (
Deadline of receipt is February 1, 2012.
Application form and instructions available online at

REU Opportunity on Stormwater Management and Ecosystem Function

A National Science Foundation Research Experience for Undergraduates (REU) summer fellowship is open at the University of North Carolina Charlotte. We invite applications from qualified, highly motivated undergraduate students from U.S. colleges/universities to participate in a 12-week lab and field based summer research experience. The program runs from May 23 – August 12 but start and end dates are flexible. The student will participate in an NSF-funded project studying the effects of stormwater management on ecosystem function (e.g. nutrient dynamics, biological integrity, temperature attenuation and hydrology) in urban streams. The student will learn field and laboratory techniques, experimental design and data analysis to develop his/her own research project within this topic. The student will be required to write a report in the format of a scientific paper and give a presentation on their project at the end of the summer. The student will also be encouraged to submit an abstract of their work for presentation at a scientific meeting (e.g. American Geophysical Union). The REU provides a $450/week stipend for living expenses and travel costs to the scientific meeting will be covered.

Applicants must be enrolled in an accredited undergraduate institution and a citizen or permanent resident of the United States. Students from underrepresented groups and institutions with limited research opportunities are especially encouraged to apply. Interested applicants should send: (1) a statement of interest, (2) resume, (3) unofficial transcript, (4) one letter of recommendation and (5) contact information for one additional reference. The statement of interest should include the following information: (i) professional goals, (ii) interest in position and (iii) relevant experience and be sent to Dr. Sara McMillan (smcmillan (at) The letter of recommendation should be sent directly from the recommender (please include the applicant’s name in the subject line for emails). Incomplete applications will not be considered. Applications will be accepted through April 22, 2011.