After the dam comes out: groundwater-stream interactions and water quality impacts of former reservoir sites

Next week, the Watershed Hydrology Lab will be well represented at the CUAHSI 2014 Biennial Colloquium. We’ll be presenting four posters, so here come the abstracts…


After the dam comes out: groundwater-stream interactions and water quality impacts of former reservoir sites

Krista Brown and Anne Jefferson

Over that past decade, dam removals have become increasingly popular, as many dams near the end of their life expectancy. With an increasing number of anticipated dam removals coming in the near future this study aims to develop an understanding of groundwater-stream interactions and water quality in former reservoir sites after dam removals have occurred. Low head dams (~2 m) were removed in 2009 from Plum Creek in Kent, Portage County, Ohio and on Kelsey Creek in Cuyahoga Falls, Summit County, Ohio. Kelsey Creek reservoir has been unaltered since the dam removal and consists of a stream channel flowing through riparian- wetland environments, while Plum Creek reservoir underwent channel restoration in 2011. At Kelsey Creek, 20 piezometers and 3 wells were installed in the stream and riparian areas. Pressure transducers were also deployed in each well and stream from November 20, 2013 to January 5, 2014. Hydraulic conductivity was calculated using the Hvorslev method. Since October 2013, hydraulic heads have been recorded semi-weekly and water samples have been taken in the wells and stream. Water quality is being evaluated with field-measured pH, temperature, specific conductance, and dissolved oxygen, and ion chromatography of chloride, bromide, nitrate, sulfate and phosphate concentrations. Plum Creek is being used to understand the water quality effects of channel restoration at former reservoir sites.
At Kelsey Creek, hydraulic conductivity ranges five magnitudes, from 10?2 to 10?6 m/s, but wells near the channel, in an off-channel wetland, and on an adjacent hillslope respond similarly during high flow events. However, the well closest to the stream shows substantial variability in specific conductance, indicating bidirectional groundwater-stream exchange. Despite the wetlands and presumed greater groundwater-stream exchange in the unrestored Kelsey Creek, stream water quality is similar to the restored Plum Creek site. This suggests that the water quality measures considered here should not determine whether to restore channels within former reservoir sites. Findings from this research may be applicable when considering options for future dam removal sites.