Sensitivity of precipitation isotope meteoric water lines and seasonal signals to sampling frequency and location

The Watershed Hydrology lab will be out in force for the Geological Society of America annual meeting in Vancouver in October. Over the next few days, we’ll be sharing the abstracts of the work we are presenting there.

SENSITIVITY OF PRECIPITATION ISOTOPE METEORIC WATER LINES AND SEASONAL SIGNALS TO SAMPLING FREQUENCY AND LOCATION

REYNOLDS, Allison R., Department of Geology, Kent State University, 221 McGilvrey Hall, Kent, OH 44242, areyno13@kent.edu and JEFFERSON, Anne J., Department of Geology, Kent State University, 221 McGilvrey Hall, Kent, OH 44240
Every precipitation event has its own isotopic signature, making it useful for hydrology purposes, like estimating transit time or identifying seasonality of groundwater recharge. Our purpose is to compare the seasonal signal and local meteoric water line (LMWL) generated by one year of event-based sampling to those resulting from multi-year monthly sampling at the closest Global Network of Isotopes in Precipitation (GNIP) stations. The question we seek to answer is whether data from different sampling strategies, periods, and locations within the eastern Great Lakes region in North America converge on a regional-scale LMWL and seasonal signal.
From October 2012-present precipitation samples were collected in Kent, Ohio, filtered and analyzed by a Picarro L-2130i at Kent State University. The closest GNIP sites are Coshocton, Ohio, USA and Simcoe, Ontario, Canada; monthly data was downloaded from a database. For each site, we graphed the ?18O versus ?2H and added a linear trendline to represent the LMWL and fit sine waves to the data to assess seasonal isotopic signal.
Based on the event data, Kent has the most isotopically depleted precipitation, but when looking at monthly samples, it falls between Simcoe to the north and Coshocton to the south. This suggests that, in this region, isotopically light precipitation events are more important in terms of their frequency than their amount. LMWLs for each site were similar. Comparing the LMWLs generated from the event samples and monthly data, monthly data had a slightly lower slope and d-excess. For Coshocton, amplitude of the seasonal sine wave for ?18O is 6.2‰, for Simcoe the sine wave is 4.3 ‰. For the Kent dataset, event-based data produced a sine wave with amplitude of 6.1‰, while monthly data resulted in a 4.9‰ amplitude wave. While it is possible that the amplitude of a wave fit to monthly data would increase with data points that represent isotopically extreme months, it is likely that curves fit to monthly data will frequently under-represent the variability in precipitation isotopes as measured at event and sub-event timescales. Both the LMWL and seasonal signal analysis suggest a greater variability in precipitation isotope signatures during the winter relative to the summer in the eastern Great Lakes region.