AGU 2013: Transient Storage versus Hyporheic Exchange in Low-gradient Headwater Streams
Abstract season is upon us. I’ll be at AGU, where there looks to be loads of good sessions, including one on “Groundwater-Surface Water Interactions: Physical, biological, and chemical relevance“. Hopefully, my work (abstracted below) will be part of this session.
Transient Storage versus Hyporheic Exchange in Low-gradient Headwater Streams
A.J. Jefferson, S.M. Clinton, M. Osypian
In-channel storage and hyporheic exchange are components of transient storage that exist as a function of geomorphology and which can have contrasting effects on nutrient retention, temperature, and biological communities. In order to evaluate and predict the effects of geomorphic changes on the biogeochemical and ecological functioning of transient storage zones, in-channel storage needs to be quantified separately from hyporheic exchange. In four headwater streams, we used salt injections modeled in OTIS-P to quantify total transient storage fluxes and piezometer measurements to quantify hyporheic fluxes. In the mixed bedrock-alluvial streams, restoration increased both in-channel and hyporheic exchange fluxes, but in-channel transient storage was dominant. In the fully alluvial streams, total transient storage fluxes were ~100 times greater in the stream which had undergone restoration than in one where no restoration had occurred. Conversely, hyporheic fluxes were ~400 times smaller in the restored alluvial stream. Thus, in the restored stream, hyporheic flux was <1% of total transient storage flux, while in the unrestored stream, hyporheic flux accounted for up to 75% of total transient storage fluxes. This difference in the contribution of the hyporheic zone to total transient storage appears to be a function of both channel morphology and bed sediments, primarily the creation of pools and reduction in sediment size that occurred as a result of restoration. These dramatic variations in the magnitude and relative proportions of in-channel and hyporheic fluxes that occur across low-gradient, headwater streams may be an important control on reach-scale biogeochemical and ecosystem functioning.