Abstract: Using Computer Modeling To Asses Hydraulic Parameter Transferability From An Undeveloped To An Urban Watershed With Stormwater Infrastructure

Rounding out the abstracts from our group for the 2012 Geological Society of America meeting, Colin Bell will be presenting preliminary model results.

USING COMPUTER MODELING TO ASSES HYDRAULIC PARAMETER TRANSFERABILITY FROM AN UNDEVELOPED TO AN URBAN WATERSHED WITH STORMWATER INFRASTRUCTURE

BELL, Colin D., Dept. Infrastructure and Environmental Systems, UNC Charlotte, Charlotte, NC 28262, cdbell01@yahoo.com, MCMILLAN, Sara, Department of Engineering Technology, University of North Carolina at Charlotte, Charlotte, NC 28223, JEFFERSON, Anne J., Department of Geology, Kent State University, 221 McGilvrey Hall, Kent, OH 44240, TAGUE, Christina, Bren School of Environmental Science and Management, University of California-Santa Barbara, Santa Barbara, CA 93106, and CLINTON, Sandra, Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223

Urban infrastructure expansion causes the alteration of hydrologic and nutrient regimes during storms, elevating peak discharges and nitrogen (N) concentrations in receiving streams. The inclusion of stormwater Best Management Practices (BMPs) in urban watersheds has been found to help ameliorate these problems by attenuating hydrographs and reducing N concentrations through denitrification and uptake. The Regional Hydro-Ecological Simulation System (RHESSys) is a distributed, process-based model that simulates hydrologic activity as well as natural and anthropogenic N processing and export. RHESSys is being used to develop hydro-ecological models to assess the impact of different BMP implementation strategies on instream N in a developing residential watershed in Charlotte, NC where water quality and land use data accompany 10 years of hydrologic data. Hydraulic parameter sets have been calibrated to simulate subsurface water propagation in a nearby, undeveloped watershed with no existing stormwater infrastructure. The suitability of these parameter sets has been assed using the GLUE uncertainty prediction procedure, a calibration and uncertainty estimation method that addresses the equifinality of parameter sets given errors in model structure and observed data. The viability for transferring the model parameters to the urban watershed has been analyzed by comparing an observed discharge record with one predicted using calibrated parameters. Future RHESSys simulations will test multiple, spatially-explicit scenarios to identify the BMP treatment scenarios that minimize aquatic ecosystem degradation.