Sediment Transport

- Dissolved load
 Travels in solution
- Suspended load
 - Particles transported in water column, not in contact with bed
- Bed load
 - Particles transported by rolling, sliding, or saltation

Photo by Dawn Summer, UC Davis

Sediment transport

- In terms of denudation rates: dissolved and wash load are most important
 - Dissolved load ~20% of total
 - Suspended load ~70% of total
- In terms of geomorphic work: bed material load is key

Transport mode versus size

Figure from Peter Wilcock

Magnitude vs. Frequency Effects

Most of the time	Sometimes 2 to 6 weeks per year	Only briefly 0-3 weeks per year	v. Rarely Every decade or two	sock
Not much happens	Moderately high flows; some transport of fines (sand) over immobile coarse bed	High flows, moving larger grains making up bed framework	Monster floods	from Peter Wild
	Sand may collect into pools, infiltrate into interstices	Bed scour & aggradation, bar building & migration, bank erosion & other geomorphic action	Reset the channel bed and, often, its geometry	Figure

Dissolved load ------

Suspended load -----Bed load ------

Dissolved load

 Solute concentration (C) declines with discharge (Q) → dilution effect

 $C = aQ^{b}$ b<0 (often ~-0.2)

 Solute load (Q_{diss}) increases with discharge

 $Q_{diss} = C \times Q$

Recommended reading: Godsey, S. E., Kirchner, J. W., & Clow, D. W. (2009). Concentration–discharge relationships reflect chemostatic characteristics of US catchments. *Hydrological Processes*, *23*(13), 1844-1864.

- High dissolved load
- River Wye, England flows through limestone
- High suspended load
- Huang He River, Lanzhou ("Yellow River") drains Loess Plateau

Suspended sediment

Suspended sediment is generally supply limited:

- Supply limited: Sediment load is controlled by the rate it is delivered to the river
- Transport limited: Sediment load is controlled by the transport capacity of the river

Hicks et al. 2000 WRR

Hysteresis

- Dissolved and suspended concentrations v. Q are dependent on history
- CONCENTRATION (mg /1) Concentrations higher on the rising limb of an SEDIMENT event and earlier in the season \rightarrow supply effect
- Concentrations higher on falling limb \rightarrow wave vs. water velocity

Fig. 1. Hysteresis in discharge-sediment concentration relationships in the Fraser River at Hope, British Columbia, as shown by daily observations (■---January-March; △---April-June; ▲---Julv-September:
 October-December).

Whitfield and Schreier 1981 Limnol. Ocean.

- Very high concentrations of susp. sed.(>20%)
 - Reduce turbulence
 - Increase viscosity
 - Reduce settling velocities
 - → transport larger sediment

Toutle River, Washington

What does bed load transport look like?

http://all-geo.org/jefferson/bedload-transport-videos-ftw/

•

How do grains begin to move?

Drag Force

Differential velocity between top and bottom of grain \rightarrow shear stress \rightarrow rolling, sliding **Lift Force**

Boundary layer + turbulence creates pressure differences \rightarrow Pressure difference "pulls" grains off the bed (Bernoulli Principle) \rightarrow saltation

Which grains move?

- Size
- Density
- Settling velocity
- "Hiding"

Variables relevant to bed load transport

- Flow properties: discharge, velocity, depth, width, slope, roughness
- Fluid properties: viscosity, density, temperature, suspended load concentration
- Sediment properties: density, size distribution, fall velocity
- Other: gravity, planform geometry

Hjulström diagram particle entrainment based on velocity Cobbles and

Bed Load Transport

- Bed load transport is a function of shear stress on the channel bed (i.e., boundary shear stress) $\tau = \rho g R S$
- Transport begins when conditions exceed a critical boundary shear stress. ${\cal T}_c$
- Bed load transport is a function of:

$$q_b = k(\tau - \tau_{cr})^n$$

Shields' diagram tells us about initiation of motion

• ...this is critical

transport?

 For D < ~0.5 mm, use equation, then dimensionalize

$$\operatorname{Re}_{cr*} = \frac{D}{\upsilon} \sqrt{0.1 \left(\frac{\gamma_s}{\gamma} - 1\right) g D}$$

Example Problem

- River flow occurs as follows: Q = 100 m³/s, average depth = 1 m, average velocity = 0.50 m/s, channel slope = 0.0001, water temperature = 5°C, viscosity (ν) = 1.51x10⁻⁶, median size of 0.4 mm and a density of 2.65 g/cm³.
- What is the critical shear stress for incipient motion?

Example Problem

3rd:

$$\tau_{cr} = \tau_{cr^*} g(\rho_s - \rho_w) D$$

Bed Load Transport

• Simplified bed load transport equations take the form:

$$q_b = k(\tau - \tau_{cr})^n$$

 Real transport models are ugly:

Models versus Measurements

Model PROs

- Allow predictions in streams without data
- Allow us to test our understanding of the physics
- They are dry and safe
- They are cheap and instantaneous
- Measurements aren't
 perfect

Measurement PROs

- Measurements provide real data for a particular site
- Measurements can be used to create a rating curve
- Models have big uncertainties
- Models need some field data to begin with

Measuring Bed Load

Helley-Smith sampler

Net frame samplers

Fig. 1: Schematic diagram of a bedload trap. All measurements in mm (from Bunte 1998).

Only work at low flow rates

Sediment Traps

Tracer Gravel

