Open Channel Flow: Flow Resistance Velocity Variation

7 September 2016

Flow resistance (frictional effects)

- Free surface resistance = waves and hydraulic jumps
- Channel resistance = bank irregularities, changes in channel alignment
- Boundary resistance = bed material (grain roughness) and bedforms (form roughness)
 - This one is key.

Flow resistance equations

Manning's equation

 n=Manning's n
 k = 1.49 for ft/s

$$v = \frac{k_m}{n} R^{2/3} S^{1/2}$$

• Chezy equation – C = coefficient $v = C\sqrt{RS}$

$$f = \frac{8gRS}{v^2}$$

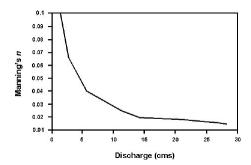
Manning's n values

Calculated, visually estimated, or from tables

http://wwwrcamnl.wr.usgs.gov/sws/fieldmethods/Indirects/nvalues/

n = 0.037 Wenatchee River, Washington

n = 0.073 Boundary Creek, Idaho


Manning-Strickler relation

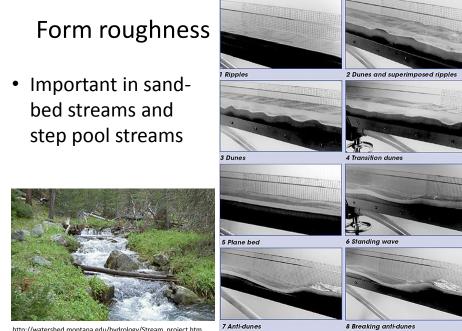
- $n = 0.0132d_{50}^{1/6}$ for d_{50} in mm
- $n = 0.0342d_{50}^{1/6}$ for d_{50} in ft
- d₅₀ is median grain diameter
- This relation assumes roughness is from grains and d₅₀ is a good way to represent grain roughness.

This is always going to underestimate the true roughness.

n depends on stage

- n decreases as stage increases (until bankfull)
- Once out of banks, n increases

Baraboo River floodplain, WI (photo by Thomas A. Meyer) http://dnr.wi.gov/topic/Lands/naturalareas/index.asp?SNA=212

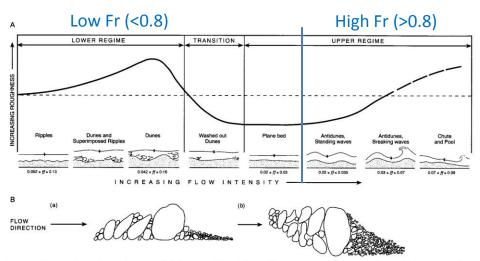
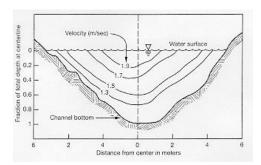

What type of resistance do these pictures represent?

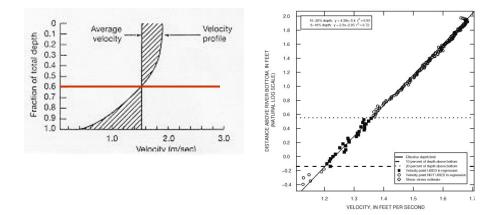
Linton Creek, Oregon Cascades, Photo by A. Jefferson, 2005

Meanders of the Rio Cauto at Guamo Embarcadero, Cuba. Photo from Wikimedia.

http://watershed.montana.edu/hydrology/Stream_project.htm

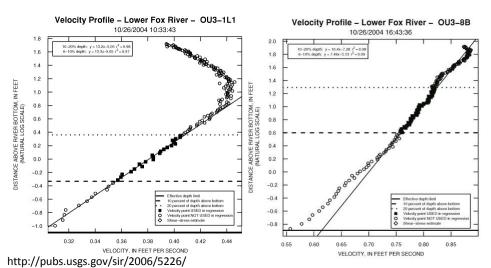
http://www.armfield.co.uk/images/s8bedforms.jpg

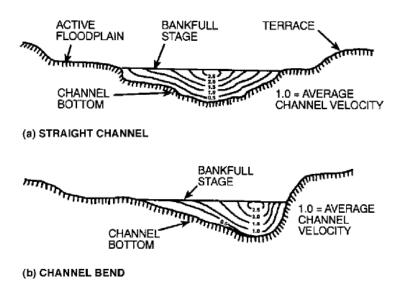




Figure 4.3 Form roughness elements. (A) In sand-bed streams: variations in flow resistance with the sequence of bed forms related to increasing flow intensity; values of the Darcy–Weisbach friction factor (ff) in flume experiments are shown (after Simons and Richardson, 1966). (B) In gravel-bed streams: pebble clusters in profile (a) and plan (b).

Knighton 1998

Velocity varies in 4 dimensions


- Vertically
- Across stream
- Downstream
- In time



Vertical Velocity Profiles

Vertical velocity profiles

Estimates of Shear Stress and Measurements of Water Levels in the Lower Fox River near Green Bay, Wisconsin

7

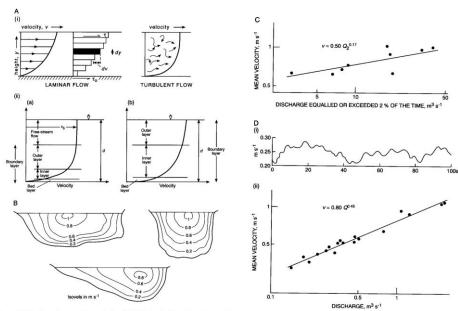


Figure 4.1 Variations in streamflow velocity. (A) With depth: (i) typical velocity profi... for laminar and turbulent flow, (ii) the structure of the boundary layer in deep (a) and shallow (b) flow. (B) At natural channel cross-sections. (C) (opposite) Downstream – relationship of velocity to discharge, Brandywine Creek (after Wolman, 1955). (D) With time: (i) velocity fluctuations at a point over a short time period; (ii) at-a-station changes in velocity with discharge measured over two years, River Bollin.

Knighton 1998