Tracers and Isotopes in Urban Hydrology

What is a hydrologic tracer?

- Any substance that can be used for tracking water movement is a tracer
- An ideal tracer behaves exactly as the traced material behaves
- A conservative tracer does not have sources or sinks (decay, sorption, or precipitation) in the system
- Environmental tracers exist in the system, applied tracers are added by scientists to study

Example of an applied (dye) tracer for studying groundwater-stream interactions

This tracer is non-conservative because it gets metabolized.

Environmental tracers

- Naturally occurring substances
- Anthropogenic signals

 - Disinfection by products from wastewater treatment process
 - Fecal coliform

Environmental tracers: Conductivity

- Electrical conductivity –the measure of how a material accommodates the transport of electric charge.
 - In water, it varies with the amount and type of dissolved ions.
 - It varies with temperature, so we normalize and call it specific conductance.

Isotopes as Environmental Tracers

- Isotopes are the same
 element, but with different
 numbers of neutrons.
- □ Two groups of isotopes:
 - Radioactive: atoms that spontaneously break down their nuclei to form other isotopes
 - Stable: do not spontaneously break down to form other isotopes

Radioactive Isotopes in hydrology

- Age of groundwater
- Measure groundwater flow rates
- □ Tracers for groundwater movement

- □ Choose isotopic system:
 - Half-life of radioisotope
 - Reactivity of isotope in system of interest

Stable Isotopes In Hydrology

 Changes in isotope ratios in environment from physical, chemical, and biological processes due to mass differences between isotopes

Figure 6-4. Variation of the isotope fractionation factor for oxygen, as a function of temperature, during the evaporation of water. Note that with increasing temperature the fractionation factor approached 1.0000. Values from Dansgaard (1964).

Stable Isotopes Tracing the Hydrologic

- Stable Isotopes of H₂O
 - □ ¹H, ²H (²D), ¹⁶O, ¹⁷O, ¹⁸O
- Vibrational frequency (energy) differences
- Provide characteristic fingerprint of origin
- Applications in hydrogeology
 - Provenance of water
 - Identify processes that formed waters
 - Separating hydrographs into "old" and "new" water

Isotopic Fractionation

- Detectable change in the ratio of an isotopic pair-due to geologic processes (partitioning of isotopes)
- Due to mass differences of isotopes—affect
 vibrational frequency of atom which affects ability to make (& break) bonds w/ surrounding environment

- Examples
 - Evaporation-precipitation of rain
 - Dissolution & precipitation of crystals in fluid
 - Exchange reactions: liquid-gas and liquid-crystal
 - Separation due to reaction rates (kinetic rates)

Isotope Ratio notation

$$\delta^{18}O = \left[\frac{\binom{\frac{18O}{16O}}_{16O}}{\binom{\frac{18O}{16O}}_{16O}}_{standard} - 1\right] \times 1,000$$

- $\delta =$ value % 'per mil'
- Positive vs. negative delta values
- Isotopically heavy vs. light

Precipitation: Equilibrium & the "Global Meteoric Water Line"

Sam Epstein and Toshiko Maveda,1953

Harmon Craig (1961) defined the relationship between ¹⁸O and ²H in worldwide fresh surface waters.

Precipitation: Rainout effect

Contours of δD and $\delta^{18}O$ in rainwater

What patterns do we see in the isotopic composition of rainwater? -150 1) latitudinal effect € 10 aº (-12.5) (-20)2) continental effect (-10)3) altitude effect (-7.5)4) seasonal effect* 5) amount effect* $(\delta^{18} O \text{ values in })$ parentheses)

Global pattern δ^{18} O in rainwater

Other effects

- Global Temperature Trend (from Dansgaard, 1964)
- Distance/Continentality Effect
 - \blacksquare Wintertime δ 180 -3 permil / 1000 km
 - \blacksquare Summertime δ 180 -1.5 permil / 1000 km
- Latitude Effect
 - \blacksquare δ 180 -0.5 permil per degree of latitude
- Altitude Effect
 - $lue{}$ Varies, δ 180 -0.2 to -1 per 1000 km
- Amount Effect and Seasonal Effects vary...

Use of O and H isotopes to help solve geochemical/hydrologic modeling problems

- Source of water
 - Rainwater new or old
 - Evaporated water
 - Recharge at a certain altitude
 - Age of water
- Mixing of waters
 - Leakage from lakes, rivers, aquifers
 - Groundwater surface water interactions
 - Contributions of snowmelt

- Salinization mechanism (plot of d vs concentration)
 - Evaporates surface water
 - Seawater
 - Dissolved evaporites
 - Mixing with connate brines
 - Reaction with rocks

Evaporation: Humidity & Local Meteoric Water Lines

