HYDROGRAPH SEPARATION: GRAPHICAL AND TRACER METHODS (AND WHAT THEY REVEAL ABOUT URBAN WATERSHEDS)

19 February 2013 – Urban Hydrology

Why do hydrologists want to separate hydrographs?

Where does surface runoff and streamflow come from? Hydrographs are the principal hydrologic data source available in most watersheds

- Hydrograph contains much information about runoff sources in a watershed if we can just figure out how to separate these sources
- Teaser: Studies using isotopes to separate hydrographs revolutionized ideas about runoff in the late 1970s

Graphical Hydrograph Separation:

Graphical methods
 prevailed from the 1930s
 to 1960s
 Graphical methods still

Graphical methods still used by engineers and can be used as a basis for comparing runoff in different watersheds, but doesn't reveal much about processes

Text modified from Doug Burns and Tomas Vitvar: http://www.esf.edu/hss/lsotopeWS/Burns-Vitvar%20presentation/sld001.htm

West Creek at Pleasant Valley Road

Go to:

Download data from November 11-18, 2012

West Creek at Pleasant Valley Road

Start at start of rise, add 0.05 ft³/sec/mi²/ hour

(1.1 mi² \rightarrow 0.045 ft³/sec/mi²/ hour or 0.011 ft³/sec/mi²/ 15 minutes)

Until you intercept the falling limb

Quotes about Graphical Hydrograph Separation

- "Hydrograph separation is one of the most desperate analysis techniques in use in hydrology." -- Hewlett and Hibbert, 1967
- "Hydrograph separation appears to be little more than a convenient fiction." – Freeze, 1972

As transcribed by Doug Burns and Tomas Vitvar: http://www.esf.edu/hss/lsotopeWS/Burns-Vitvar%20presentation/sld001.htm

(data from McGlynn and McDonnell (2003)).

http://serc.carleton.edu/microbelife/research_methods/environ_sampling/stableisotopes.html

Hydrograph separation using isotope tracers

Method takes advantage of conservative mixing of ¹⁸O and ²H

Two types

- Time source new and old water
- Geographic source contributions from different landscape positions

Punchline: Isotope methods clearly show much of stormflow or peakflow is old water stored in catchment prior to storm (*in forested watersheds*)

Stable Isotopes Tracing the Hydrologic Cycle

- □ Stable Isotopes of H_2O
 - □ ¹H, ²H (²D), ¹⁶O, ¹⁷O, ¹⁸O
- Vibrational frequency (energy) differences
- Provide characteristic fingerprint of origin
- Applications in hydrogeology
 - Provenance of water
 - Identify processes that formed waters
 - Separating hydrographs into "old" and "new" water

Isotopologues of Water

Isotopologues are molecules that differ only in their isotopic content. What are the isotopologues of water?

Isotope Ratio notation

$$\delta^{18}O = \begin{bmatrix} \left(\frac{18O}{16O}\right)_{sample} \\ \frac{18O}{\left(\frac{18O}{16O}\right)_{standar\,d}} - 1 \end{bmatrix} \times 1,000$$

 $\bullet \delta = value \%$ 'per mil'

O and H are normalized to SMOW – standard mean ocean water

• $\delta^{18}O = 0\%, \delta^{2}H = 0\%$

- Positive vs. negative delta values
- Isotopically heavy vs. light

Isotopic fractionation: Detectable change in the ratio of an isotopic pair

- Due to mass differences of isotopes—affect vibrational frequency of atom which affects ability to make (& break) bonds w/ surrounding environment
- ¹⁸O and ²H content of water changes only through fractionation associated with phase changes
- Conservative behavior once isotopes become part of water molecule, they change only through mixing

Fractionation effects associated with phase changes of H₂O

- Evaporation vapor that forms is lighter than surrounding water
- Condensation liquid that forms is heavier than surrounding water
- So, precipitation selectively removes ¹⁸O and ²H from the vapor phase
- Snowmelt residual snowpack becomes isotopically heavier as light isotopes melt out first

Fractionation effects associated with phase changes of H₂O

July snowmelt, Stenkul Fiord, Ellesmere Island, Nunavut, Canada

Geography and seasonality of ¹⁸O and ²H content of precipitation

- Precipitation becomes lighter as air mass moves inland
- Precipitation becomes lighter with increasing elevation – orographic effect
- Precipitation becomes lighter towards the poles and is lighter in winter than summer

Fractionation effects associated with phase changes of H₂O

Seasonality of precipitation isotopes, Eureka, Nunavut, Canada

Global pattern $\delta^{18}\text{O}$ in rainwater

http://www.iaea.org/programmes/ripc/ih/iaea waterloo gnipmaps/iaea waterloo.htm Slide from E. Griffith, UT Arlington IAEA/University of Waterloo

Precipitation: Equilibrium & the "Global Meteoric Water Line"

Sam Epstein and Toshiko Maveda,1953 Harmon Craig (1961)defined the relationship between ¹⁸O and ^{2}H in worldwide fresh surface waters.

Evaporation: Humidity & Local Meteoric Water Lines

Slide from E. Griffith, UT Arlington

Isotopes in storm-discharge analysis

Iqbal, M.Z. 1998. Application of environmental isotopes in stormdischarge analysis of two contrasting stream channels in a watershed, Wat. Res.32(10): 2959-2968

Fig. 3. Temporal variations in the oxygen isotope ratio (Cedar River).

Isotope Hydrograph Separation: How is it done?

- Simple mass balance expression
- □ Streamflow = new water + old water

$$\Box \mathbf{Q}_{s} \delta_{s} = \mathbf{Q}_{n} \delta_{n} + \mathbf{Q}_{o} \delta_{o}$$

Rearrange to solve for the new water discharge at any point in time

$$\Box \mathbf{Q}_{n} = \mathbf{Q}_{s} \times (\delta_{s} - \delta_{o}) / (\delta_{n} - \delta_{o})$$

Isotopes in storm-discharge analysis

g. 4. Isotopic evolution of instantaneously discharged water in Cedar River by simple mixing

Isotopes in storm-discharge analysis

2959-2968

Storm hydrograph separation of the Cedar River using two-component mixing model oxygen isotope data).

Assumptions of Isotope Hydrograph Separations

- Significant differences in isotopic content of new and old water
- New and old water content has a constant isotopic content in space and time, or variation can be accounted for
- Contributions of water with with isotopic content different from old water negligible – soil water, stored surface water, multiple sources of gw

General results of hydrograph separation studies

- Old water is typically >50% of peakflow, 60-80% of total storm runoff at most sites (but humid, forested site bias)
- Agricultural and urban watersheds are dominated by new water at peak flow
- Wetlands and impoundments promote high proportion of old water in stormflow

How does urbanization show up in isotope hydrograph separation?

Table I. Land use in subcatchments of the Econlockhatchee River basin, Florida(Source: Wanielista et al., 1992)

Land use	Upstream from station HR (%)	Subcatchment between HR and FR (%)
Urban	5	23
Agricultural	26	30
Upland forest	36	21
Wetlands and open water	33	26

Gremillion et al. 2000. Application of alternative hydrograph separation models to detect changes in flow paths in a watershed undergoing urban development, Hydrol. Process. 14: 1485-1501.

How does urbanization show up in isotope hydrograph separation?

Gremillion et al. 2000. Application of alternative hydrograph separation models to detect changes in flow paths in a watershed undergoing urban development, Hydrol. Process. 14: 1485-1501.

Urbanizing Florida watershed

Downstream of urbanizing subcatchment

- □ 76% of river flow was "old" water
- Only 47% of water entering river in the urbanizing subcatchment was "old" water
- Why are these the "expected" results?

Why is hard to find isotope hydrograph separations in urban watersheds?

Gremillion et al. 2000. Application of alternative hydrograph separation models to detect changes in flow paths in a watershed undergoing urban development, Hydrol. Process. 14: 1485-1501.

Isotope hydrograph separation in a suburban watershed (during snowmelt)

Buttle et al., 1995, Applicability of isotopic hydrograph separation in a suburban basin during snowmelt, Hydrological Processes, 9: 197-211

Isotope hydrograph separation in a suburban watershed (during snowmelt)

Problem 1: What to use as pre-event isotope content?

- Baseflow maybe none in an urban watershed?
- Near stream groundwater
 not well

mixed?

Buttle et al., 1995, Applicability of isotopic hydrograph separation in a suburban basin during snowmelt, Hydrological Processes, 9: 197-211

Poor constraint of pre-event water can lead to impossible results

Isotope hydrograph separation in a suburban watershed (during snowmelt)

- Problem 2: What to use as event isotope content?
 - Rainfall?
 - But also snowmelt
 - Pre-event snowpack? Or a snowmelt time series?
 - But not even distribution, % melted, % directly connected to stream
 - Runoff to storm sewer?
 - Still need to worry about spatial variability

Buttle et al., 1995, Applicability of isotopic hydrograph separation in a suburban basin during snowmelt, Hydrological Processes, 9: 197-211

Poor constraint of event water can lead to impossible results.

Buttle et al., 1995, Applicability of isotopic hydrograph separation in a suburban basin during snowmelt, Hydrological Processes, 9: 197-211

55-63% of peak flow was "new" water. 48-55% of total runoff during melt.

Challenges for using isotopes as urban hydrology tracers

- Role of connected
 and disconnected
 impervious surfaces
- Potential for imported water from leaky pipes, irrigation, & wastewater effluent
- But these challenges can also make them useful "forensic" tools

Hibbs et al. 2012 Origin of Stream Flows at the Wildlands-Urban Interface, Santa Monica Mountains, California, USA, Environmental and Engineering Geosciences, 18(1): 51-64.

Jefferson, unpublished data

Heterogeneity in small (~0.5 km²) watersheds

New methods and approaches

- More applications in disturbed settings
- Can use solute tracers but conservative mixing assumption may not be met
- End-member Mixing Analysis (EMMA) more complex methods of separating hydrographs using multiple tracers simultaneously
- The readings by Sidle and Pellerin are great examples of applying isotopes & tracers to problems in urban hydrology