Urban Hydrology Spring 2013 Final Exam Study Guide

1) Introduction to Water and Cities important concepts:

- a) components of the water cycle,
- b) watershed concept,
- c) watershed delineation,
- d) water budgets and associated calculations
- e) hydrograph components (peakflow, lag time, baseflow, etc.)
- f) history of water management in cities (based on reading)
- g) definition of urbanization
- 2) Effects of Urbanization on Aquatic Systems important concepts:
 - a) Changes to stream hydrographs that result from urbanization
 - b) Loss of urban stream networks
 - c) Controls on the hydrologic response to urbanization
 - d) Major components and steps of TR-55 analysis
 - e) Riparian zones
 - f) Meandering and pool-riffle streams
 - g) Geomorphic effects of urbanization sediment yields during and post construction; channel morphology changes,
 - h) hydrologic tracers types and characteristics
 - i) isotopes as hydrologic tracers hydrograph separation and source water fingerprinting
 - j) Graphical versus isotope hydrograph separation: equations, physical basis, data requirements
 - k) Insights and challenges from using isotopes as urban hydrology tracers
 - Chloride as a tracer of road salt and waste water sources of chloride, historical trends, seasonal and event dynamics,

3) The (Present and) Future of Water in Cities

- a) Combined sewer overflows (CSOs) What are combined sewers and where are they found? What approach is Cleveland taking to dealing with CSOs? What other approaches are cities trying?
- b) What is stormwater? What effects can it have? How is it regulated?
- c) Effects of stormwater control on hydrographs
- d) Types of stormwater treatments principles, general design, and advantages and disadvantages of each
 - i) Wet ponds
 - ii) Stormwater wetlands
 - iii) Infiltration practices trench, basin
 - iv) Sand filters
 - v) Bioretention
 - vi) Swales
 - vii) Permeable pavement
 - viii) Cisterns and rainbarrels
 - ix) Green roofs

- e) Considerations for allocating resources (\$) for stormwater control
- f) Low Impact Development/Green infrastructure Definitions. What can they include?
- g) Ecosystem Services Definition. Examples of how it can be applied to stormwater management, stream restoration, etc.
- h) Stream restoration goals, approaches, principles to guide it
 - i) Natural channel design
 - ii) Valley morphology restoration
 - iii) Regenerative stormwater conveyance
- i) Stream restoration techniques What are the following designed to do?
 - i) Channel morphology and floodplain connection
 - ii) In-stream structures
 - iii) Streambank bioengineering
- j) Dams why build? How many? What effects do they have (upstream and downstream)?
- k) Dam removal why? What are issues that need to be considered before a dam is removed?
 What are some possible environmental consequences of dam removal?
- l) Urban soils
 - i) Basic soil soils: soil profiless, soil horizons, soil forming factors, texture, structure, water holding properties.
 - ii) Urban soil What is it? Issues with it? How can it reconditioned? How does demolition and vacancy affect soils?
 - iii) How does soil affect the outcomes of rain gardens?
- m) Watershed-scale stormwater management
 - i) Challenges and benefits
 - ii) How can it be implemented? How can its success be evaluated? Will stream ecosystems improve?
 - iii) Describe a case study of attempted watershed-scale stormwater management
- n) Rain garden design
 - i) Factors to consider for rain garden sizing and siting
 - ii) Plant selection
 - iii) Soil issues
 - iv) Maintenance and efficacy
- 4) Data Collection and Analysis
 - a) Testable hypotheses
 - b) Considerations for hydrologic data collection and analysis
 - c) Creating good figures

For the final exam you can bring:

- 1) a calculator
- 2) a couple colors of pens or pencils
- 3) 1 one-sided sheet of notes