Currently browsing tag


Congratulations to Darren and Aly!

DarrenCongratulations to Darren Reilly who did a wonderful job defending his MS thesis on Tuesday. Darren’s thesis focused on the identification of groundwater pollution and its sources in rural northeastern Pennsylvania residential water wells. Darren will be preparing his thesis for publication in a journal and is looking for a job in the energy or environmental sectors. Check him out on LinkedIn.

Congratulations also to Alison Reynolds who won first place in the Kent State Undergraduate Research Symposium, Geology/Geography category for her poster on “Sensitivity of precipitation isotope meteoric water lines and seasonal signals to sampling frequency and location.” Aly is a junior this year, and will be continuing to be a valuable member of our research group this summer and next year before heading somewhere fabulous for graduate school.

Congrats Darren and Aly. It is a pleasure to work with such passionate and dedicated students.

AGU Abstract: Spatial heterogeneity in isotopic signatures of baseflow in small watersheds: implications for understanding watershed hydrology

In a few weeks, I’ll be giving the following talk at the American Geophysical Union Fall Meeting in a session on Groundwater/Surface Water Interactions: Dynamics and Patterns Across Spatial and Temporal Scales. My talk will be in Moscone West 3014 at 11:05 am on Wednesday, December 15th, 2010.

Spatial heterogeneity in isotopic signatures of baseflow in small watersheds: implications for understanding watershed hydrology
A. J. Jefferson

Time series of stable isotopes of oxygen and hydrogen in stream water are widely used to characterize watershed transit times and flowpaths, but synoptic sampling of multiple locations within a watershed can also provide useful information about heterogeneity of stream water sources and groundwater-surface water interactions that may affect interpretations of watershed hydrology. Here I present results of same-day baseflow sampling campaigns in low-relief, 0.1 to 100 km2 watersheds. More than half of less than 5 km2 forested and urban watersheds sampled in this study had variability in ?2H exceeding 2‰ and ?18O variability exceeding 1‰, substantially larger than the analytical uncertainty. In some cases, the heterogeneity was extreme, with ?2H varying by >10‰ over 150 m in one stream. Some isotopic perturbations occur in conjunction with stream conductivity and temperature changes, and such zones likely reflect localized contributions from fractured crystalline bedrock. In the urban 100 km2 watershed, mainstem baseflow isotopes were relatively homogeneous, but ?2H varied by more than 10‰ across tributaries, suggesting that subwatersheds are fed by water with different sources or transit times. Some urban streams were isotopically similar to the municipal water supply, suggesting that water main leakage and wastewater discharge may be locally significant contributors to baseflow. The isotopic heterogeneity of small streams and watersheds suggests that an understanding of groundwater-stream interactions is needed to correctly interpret isotope-based inferences about watershed transit times and flowpaths.

Anne's picks of the June literature: Watershed Hydrology

ResearchBlogging.orgIt starts when when a water molecule in precipitation lands on the ground, and it ends when that same water molecule leaves the watershed as streamflow. In between, that molecule may move over the land surface, through the soil in big holes (macropores) or in tiny spaces between grains in the soil, through the bedrock as groundwater, or any combination of those pathways. How long it takes for the water molecule to make its journey, what hydrologists call the transit time, depends on the flow paths that it takes. And that transit time, in turn, affects biogeochemical processing and contaminant persistence. Inversely, if hydrologists can measure the distribution of transit times for a particular watershed, they can infer things about the storage, flowpaths, and sources of water in the watershed. Thus, transit time distributions help us peek into the hidden inner workings of the watershed….if we understand what we are really measuring and what those measurements are really telling us. And that topic is one of lots of active research in the community of watershed hydrologists, and its the subject of a number of recently published papers.

In what seems to be an annual tradition, Hydrological Processes has devoted their June issue to topics relating to catchment hydrology and flowpath tracers. This year, the focus is Preferential Flowpaths and Residence Time Distributions and it’s edited by Keith Beven. It’s the sort of issue that makes me want to go over to the library stacks and spend the day in a comfy chair reading and enjoying the journal from cover to cover. While all of the articles in this special issue make my pulse race a little, here are a couple that really strike my fancy:

McDonnell, J., McGuire, K., Aggarwal, P., Beven, K., Biondi, D., Destouni, G., Dunn, S., James, A., Kirchner, J., Kraft, P., Lyon, S., Maloszewski, P., Newman, B., Pfister, L., Rinaldo, A., Rodhe, A., Sayama, T., Seibert, J., Solomon, K., Soulsby, C., Stewart, M., Tetzlaff, D., Tobin, C., Troch, P., Weiler, M., Western, A., Wörman, A., & Wrede, S. (2010). How old is streamwater? Open questions in catchment transit time conceptualization, modelling and analysis Hydrological Processes, 24 (12), 1745-1754 DOI: 10.1002/hyp.7796

In this invited commentary, McDonnell and 28 colleagues lay out the definition of transit time and the current limits of our understanding on its controls in watersheds and its relationship to hydrograph characteristics, groundwater, and biogeochemical processing. They then provide their research vision for pushing past these limits, through a combination of field research and advances in modeling.

Kirchner, J., Tetzlaff, D., & Soulsby, C. (2010). Comparing chloride and water isotopes as hydrological tracers in two Scottish catchments Hydrological Processes, 24 (12), 1631-1645 DOI: 10.1002/hyp.7676

Oxygen isotopes of water and chloride concentrations have been widely used to estimate watershed travel times. They are generally regarded as conservative tracers, but they are not perfect. Here Kirchner et al. compare the time series of the two tracers for a pair of Scottish catchments and show that while both tracers exhibit strongly damped signals relative to precipitation, the travel times calculated using oxygen isotopes were 2-3 times longer than for chloride. So it seems that both tracers are telling us similar things about the ways that catchments move and store water, but that quantitative estimates of travel time are going to be tricky to compare across tracers.

Stewart, M., Morgenstern, U., & McDonnell, J. (2010). Truncation of stream residence time: how the use of stable isotopes has skewed our concept of streamwater age and origin Hydrological Processes, 24 (12), 1646-1659 DOI: 10.1002/hyp.7576

The stable isotopes of water have a shelf life of about 5 years or less. It’s not that they break down (they are stable isotopes, after all); it’s that seasonal input signals get damped over time, so that ages greater than 5 years can’t be resolved. In contrast, tritium (the unstable isotope of hydrogen) has a half life of ~12.4 years. A few decades ago, water ages were estimated using tritium, which conveniently had a bomb peak that made a handy marker of recharge in the early 1960s. These days, water ages are usually estimated by the stable isotopes alone. In this paper, Stewart et al suggest that we are missing part of the story when we use just stable isotopes, because we effectively discount any contributions from water >5 years since it feel from the sky. Incidentally, those contributions that we have been neglecting? That’s the bedrock groundwater and it might be quite important to explaining the behavior of streams. Stewart et al. suggest that we return to embracing tritium as part of a “dual isotope framework” so that we can more accurately quantify groundwater contributions to streamflow. The issue of the shape of travel time distributions (are they exponential or fractal?) is explored in more detail in a paper by Godsey et al. in the same issue and Soulsby et al. explore how relationships between transit times and hydrograph and watershed characteristics might be used to estimate streamflows in data-sparse mountain watersheds.

CUAHSI's Spring 2010 Hydrology Cyberseminars

The excellent series of hydrological cyber-seminars continues this spring, as listed below. UNC Charlotte folks: please note that the March 12th seminar focuses on the isotope analyzer that we have in my lab. If after a few days of spring break, you find yourself yearning for some science, tune in to the seminar.

We are pleased to announce a great line-up of six cyberseminar presentations for the Spring seminar. Instructions on how to attend these online webinars will be distributed via the listservs approximately one week prior to each event. As usual, if you are unable to attend a live seminar, a recording will be made available for later viewing. Included here is a link to a downloadable 8”x11” PDF poster that we encourage you to display prominently on your campuses.

Spring 2010 Schedule
February 26, 2010; 3:00pm ET
• Jared Abraham, USGS (Denver) & James Cannia, USGS (Lincoln)
Title: Using airborne geophysical surveys to improve groundwater resource management models

March 12, 2010; 3:00pm ET
• Manish Gupta, Oregon State University
Title: High-frequency field-deployable isotope analyzer for hydrological applications

March 19, 2010; 3:00pm ET
• Brian Waldron & Beatrice Magnani, University of Memphis
Title: Applications of geophysical prospecting in hydrology

April 2, 2010; 3:00pm ET
• Jeanne VanBriesen, Carnegie Mellon University
Title: The River Alert Information Network (RAIN): A wet-weather sensor network for water quality in Pittsburgh

April 16, 2010; 3:00pm ET
• Bridget Scanlon, Laurent Longuevergne & Clark Wilson, University of Texas at Austin
Title: Advances in Ground-based Gravity for Hydrologic Studies

April 30, 2010; 3:00pm ET
• Jim Heffernan, Florida International University & Matt Cohen, University of Florida
Title: Inferring biogeochemical processes from high-frequency nitrate measurements in flowing waters

Cyberseminars web page:

My picks of the November literature

It is not that there was no October literature to pick. My time to read articles simply disappeared in the lead-up to and excitement of the Geological Society of America meeting. This month, however, I am back on track and I will try to update this post as I move through the last few weeks of November.

Fussel, H-M. 2009. An updated assessment of the risks from climate change based on research published since the IPCC Fourth Assessment Report. Climatic Change (2009) 97:469–482. doi:10.1007/s10584-009-9648-5
The takeaway message is this: While some topics are still under debate (e.g., changes to tropical cyclones), most recent research indicates that things are looking even worse now than we thought a few years ago. Greenhouse gas emissions are rising faster than we anticipated, and we have already committed to substantial warming, which is currently somewhat masked by high aerosol concentrations. It is increasingly urgent to find mitigation and adaptation strategies. Not good.

Gardner, LR. 2009. Assessing the effect of climate change on mean annual runoff. Journal of Hydrology. 379 (3-4): 351-359. doi:10.1016/j.jhydrol.2009.10.021
This fascinating article starts by showing a strong correlation (r2 = 0.94) between mean annual runoff and a function of potential evapotranspiration and precipitation. The author then goes on to derive an equation that shows how temperature increases can be used to calculate the change in evapotranspiration, therefore solving the water budget and allowing the calculation of the change in mean annual runoff. Conversely, the same equation can be used to solve for the necessary increase in precipitation to sustain current runoff under different warming scenarios.

Schuler, T. V., and U. H. Fischer. 2009.Modeling the diurnal variation of tracer transit velocity through a subglacial channel, J. Geophys. Res., 114, F04017, doi:10.1029/2008JF001238.
The authors made multiple dye tracer injections into a glacial moulin and then measured discharge and tracer breakthrough at the proglacial channel. They found strong hysteresis in the relationship between tracer velocity and proglacial discharge and attributed this hysteresis to the adjustment of the size of a subglacial Röthlisberger channel to hydraulic conditions that change over the course of the day. Cool!

Bense, V. F., G. Ferguson, and H. Kooi (2009), Evolution of shallow groundwater flow systems in areas of degrading permafrost, Geophys. Res. Lett., 36, L22401, doi:10.1029/2009GL039225.
Warming temperatures in the Arctic and sub-arctic are lowering the permafrost table and activating shallow groundwater systems, causing increasing baseflow discharge of Arctic rivers. This paper shows how the groundwater flow conditions adjust to lowering permafrost over decades to centuries and suggests that even if air temperatures are stabilized, baseflow discharge will continue to increase for a long time.

Soulsby, Tetzlaff, and Hrachowitz. Tracers and transit times: Windows for viewing catchment scale storage. Hydrological Processes. 23(24): 3503 – 3507. doi: 10.1002/hyp.7501
In this installment of Hydrological Processes series of excellent invited commentaries, Soulsby and colleagues remind readers that although flux measurements have been the major focus of hydrologic science for decades, it is storage that is most relevant for applied water resources problems. They show that tracer-derived estimates of mean transit time combined with streamflow measurements can be used to calculate the amount of water stored in the watershed. They use their long-term study watersheds in the Scottish Highlands to illustrate how transit time and storage scale together and correlate with climate, physiography, and soils in the watersheds. Finally, they argue that while such tracer-derived storage estimates have uncertainties and are not a panacea, they do show promise across a range of scales and geographies.

Chatanantavet, P., and G. Parker (2009), Physically based modeling of bedrock incision by abrasion, plucking, and macroabrasion, J. Geophys. Res., 114, F04018, doi:10.1029/2008JF001044.
Over the past 2 decades, geomorphologists have developed much better insight into the landscape evolution of mountainous areas by developing computerized landscape evolution models. A key component of such models is the stream power rule for bedrock incision, but some have complained that is not physically based enough to describe. In this paper, the authors lay out a new model for bedrock incision based on the mechanisms of abrasion, plucking, and macroabrasion (fracturing and removal of rock by the impact of moving sediment) and incorporating the hydrology and hydraulics of mountain rivers. This could be an influential paper.

Payn, R. A., M. N. Gooseff, B. L. McGlynn, K. E. Bencala, and S. M. Wondzell (2009), Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States, Water Resour. Res., 45, W11427, doi:10.1029/2008WR007644.

Tracer tests were conducted along 13 continuous reaches of a mountain stream to quantify gross change in discharge versus net loss and net gain. Interestingly, the change in discharge over some reaches did not correspond to calculations of net loss or net gain based on tracer recovery. These results suggests that commonly used methods for estimating exchange with subsurface flow may not be representing all fluxes. Bidirectional exchange with the subsurface, like that found in this paper, is likely to be very important for nutrient processing and benthic ecology.

Please note that I can’t read the full article of AGU publications (including WRR, JGR, and GRL) until July 2010 or the print issue arrives in my institution’s library. Summaries of those articles are based on the abstract only.

More new papers I'm itching to read

Godsey, S.E., J.W. Kirchner, and D.W. Clow, 2009. Concentration-discharge relationships reflect chemostatic characteristics of US catchments, Hydrological Processes 23 (13): 1844-1864.

Tetzlaff, D., J. Seibert, and C. Soulsby. 2009. Inter-catchment comparison to assess the influence of topography and soils on catchment transit times in a geomorphic province; the Cairngorm mountains, Scotland. Hydrological Processes 23 (13): 1874-1886.

Lyon, S.W., S.L.E. Desilets, and P.A. Troch. 2009. A tale of two isotopes: differences in hydrograph separation for a runoff event when using delta-D versus delta-18O. Hydrological Processes 23 (14): 2095-2101.

Bloomfield, J.P., D.J. Allen, and K.J. Griffiths. 2009. Examining geological controls on baseflow index (BFI) using regression analysis: An illustration from the Thames Basin, UK, Journal of Hydrology, 373: 164-176.

Pascal Goderniaux, Serge Brouyère, Hayley J. Fowler, Stephen Blenkinsop, René Therrien, Philippe Orban, Alain Dassargues. 2009. Large scale surface–subsurface hydrological model to assess climate change impacts on groundwater reserves, Journal of Hydrology, 373: 122-138