Currently browsing category

teaching

Rayleigh isotope distillation module – development and transferability in geoscience education

The Watershed Hydrology lab will be out in force for the Geological Society of America annual meeting in Vancouver in October. Over the next few days, we’ll be sharing the abstracts of the work we are presenting there.

RAYLEIGH ISOTOPE DISTILLATION MODULE – DEVELOPMENT AND TRANSFERABILITY IN GEOSCIENCE EDUCATION

GRIFFITH, Elizabeth M., Earth and Environmental Sciences, University of Texas at Arlington, 500 Yates St, Arlington, TX TX 76019, lgriff@uta.edu, ORTIZ, Joseph D., Department of Geology, Kent State University, 221 McGilvrey Hall, Kent, OH 44242, JEFFERSON, Anne J., Department of Geology, Kent State University, 221 McGilvrey Hall, Kent, OH 44240, DEES, David, Faculty Professional Development Center and School of Foundations, Leadership and Administration, Kent State University, 231 Moulton Hall, Kent, OH 44242, and MERCHANT, William, Department of Evaluation and Measurement, Kent State University, 111L Nixon Hall, Kent, OH 44242
Rayleigh distillation is an important concept in geochemistry – applied to isotopic and elemental systems ranging from crystallization in magma chambers to oxygen isotope stratigraphy across glacial-interglacial periods. A teaching module that allows students to discover first-hand consequences of isotopic fractionation and Rayleigh distillation was developed, peer-reviewed, modified and used in thre upper-division geoscience courses: Sedimentology/Stratrigraphy, Environmental Geochemistry and Paleoceanography. In the module “Rayleigh isotope effect in the oceans: building glaciers” students perform (or are given data from) a simple batch distillation experiment that they model using open system Rayleigh isotopic fractionation. Insight on isotopic fractionation during phase transitions and a fundamental understanding of oxygen isotope stratigraphy is learned first-hand by the students preforming simple experiments and analyzing the data on sophisticated equipment. The teaching module is adaptable for the geoscience curriculum, including upper division courses and introductory courses. The module has only been tested in three upper division courses, but future work adapting and implementing the activity in an Introduction to Oceanography lab is planned.
Funding by the NSF Division of Undergraduate Education allowed us to study the impact on student learning and motivation from teaching the material within the module using different pedagogical approaches including a paper-based data analysis activity and hands-on data collection with and without access to the water isotope analyzer. Assessment techniques were developed and implemented through the close collaboration with a faculty expert within the educational field. The 3-year project is in its second year and initial quantitative results and reflections from the faculty and students will be presented. Both faculty noted a difference in the classroom dynamic with the students performing the experiments vs those completing the paper-based data analysis. Additional strategies will be highlighted for the transferability of the hands-on experiment to institutions and departments without access to the water isotope analyzer.

Hands-on experiences with stable isotopes in the geosciences curriculum

The Watershed Hydrology lab will be out in force for the Geological Society of America annual meeting in Vancouver in October. Over the next few days, we’ll be sharing the abstracts of the work we are presenting there.

HANDS-ON EXPERIENCES WITH STABLE ISOTOPES IN THE GEOSCIENCES CURRICULUM

JEFFERSON, Anne J.1, GRIFFITH, Elizabeth M.2, ORTIZ, Joseph D.1, DEES, David3, and MERCHANT, William4, (1) Department of Geology, Kent State University, 221 McGilvrey Hall, Kent, OH 44242, ajeffer9@kent.edu, (2) Earth and Environmental Sciences, University of Texas at Arlington, 500 Yates St., Arlington, TX 76019, Arlington, TX TX 76019, (3) Faculty Professional Development Center and School of Foundations, Leadership and Administration, Kent State University, 231 Moulton Hall, Kent, OH 44242, (4) Department of Evaluation and Measurement, Kent State University, 111L Nixon Hall, Kent, OH 44242

Over the past thirty years, environmental and geoscience research has increasingly utilized stable isotope ratios to understand problems as diverse as paleoclimates, magma genesis, and processes in the hydrosphere and critical zone. New laser-based technology for measuring isotope ratios has significantly reduced the cost of setting up and maintaining an isotope lab. The new technology is also easier to use with students than traditional isotope ratio mass spectrometers, so there is strong potential to introduce hands-on experiences into the geoscience curriculum.
This project, funded by the NSF Division of Undergraduate Education, assessed the impact that different pedagogical approaches have on student learning of stable isotope concepts in upper-division geoscience courses (Watershed Hydrology; Sedimentology/Stratigraphy; Environmental Geochemistry). Groups of students were exposed to this content via (1) a lecture-only format; (2) a paper-based data analysis activity; and (3) hands-on data collection, sometimes including spectrometer analysis. Pre- and post-tests measured gains in content knowledge while approaches to learning and motivational questionnaires instruments were used to identify the effects of the classroom environment on learning approaches and motivation. Focus group interviews were also conducted to verify the quantitative data. Preliminary findings of this study, currently in year two of three, include: a) a common decrease in student motivation as the semester progresses, b) relatively minor changes in student approaches to learning regardless of pedagogical strategy, and c) students’ positive responses to professor passion.
Peer review of modules and activities has been used to ensure high quality content is being delivered. Close collaboration between geosciences and education faculty at all project stages has enabled deployment of robust measures of student learning, increased responsiveness of the research to developments in the classroom, and facilitated exploration of unexpected project results. In its final year, the project will focus on high-impact dissemination of developed curriculum and project results, through workshops and on-line repositories.

Mountaintop Removal Mining

This semester I’m teaching Environmental Earth Science to a fantastic group of students at Kent State. In tomorrow’s class about fossil fuels, we’ll be talking about coal formation, use, and environmental consequences. A big one I think they should be aware of is the practice of mountaintop removal mining in West Virginia. We’ve already talked about it a bit, but I think this video gives some nice visuals, even if the narration veers a bit from overly dramatic to “boys with toys”.

From the Smithsonian:

Several well-respected scientists are working to figure out the impact of mountaintop removal mining on stream ecosystems. The coal companies haven’t exactly lined up to fund their work and provide access to the sites. So what *do* we know about the impacts of mountaintop mining on Appalachian streams and rivers? Here’s just one example, from the abstract of Bernhardt and Palmer (2011):

Southern Appalachian forests are recognized as a biodiversity hot spot of global significance, particularly for endemic aquatic salamanders and mussels. The dominant driver of land-cover and land-use change in this region is surface mining, with an ever-increasing proportion occurring as mountaintop mining with valley fill operations (MTVF). In MTVF, seams of coal are exposed using explosives, and the resulting noncoal overburden is pushed into adjacent valleys to facilitate coal extraction. To date, MTVF throughout the Appalachians have converted 1.1 million hectares of forest to surfacemines and buried more than 2,000 km of stream channel beneath mining overburden. The impacts of these lost forests and buried streams are propagated throughout the river networks of the region as the resulting sediment and chemical pollutants are transmitted downstream. There is, to date, no evidence to suggest that the extensive chemical and hydrologic alterations of streams by MTVF can be offset or reversed by currently required reclamation and mitigation practices.

Here’s an overview of the consequences and some suggested policy recommendations, presented in Science in 2010.

Among the scientists working on the environmental consequences of mountaintop removal, Margaret Palmer has become perhaps the most visible. Here she is on the Colbert Report:

(Note: the content appears to be unavailable tonight. Hopefully it will be made available again soon.)

Finally, here’s an profile of Margaret Palmer and her work on mountaintop removal mining, published earlier this year in Science magazine.

For more information:

Watershed Hydrology Trip to Susquehanna Shale Hills Critical Zone Observatory

Kent State University Department of Geology’s Watershed Hydrology class visited the Susquehanna Shale Hills Critical Zone Observatory on April 5-6, 2014. Penn State post-doc Pamela Sullivan gave them a tour of the watershed and its instrumentation, with a focus on how the measurements could contribute to understanding how hydrology drives landscape evolution on shales. The students were introduced to the challenges of hydrologic field work as they attempted to produce a continuous flow of water from a 75′ foot deep well on the watershed’s ridgeline. On Sunday, the students learned and practice water quality sampling protocols and collected water samples from streams and shallow wells in the CZO watershed and in watersheds with differing geology.Temperature, pH, specific conductance, and DO were measured in the field, and ions, cations, and stable isotopes will be measured in laboratories at Penn State and Kent State. The students will discuss these data in class over the next several weeks as they integrate their understanding of how geology and topography control hydrologic flowpaths, streamflow generation mechanisms, and water quality.

students, sign, forest in background

Kent State watershed hydrologists in front of the CZO sign. Photo by Pam Sullivan, April 2014.

Three people, one ISCO.

Pam Sullivan explains how an ISCO water sampler works.

3 students, tubing, filter, bottle.

Collecting a water sample from a well at the SSH CZO.

Kimm with a pipe wrench.

Kimm Jarden and Sebastian Dirringer are put to work cleaning a water retrieval system for one of the deeper wells in the CZO.

Students write in notebooks in a forest near a PVC well.

Recording data on the YSI from one of the shallow wells at the CZO.

The class stayed on the shores of Lake Perez, which has been drained for the last few years to enable repairs on the dam. The lake has just begun refilling, but while empty it has created some interesting research opportunities.

Students in front of a sign for Lake Perez.

Kent State students enjoyed seeing a mostly empty reservoir. It’s neat to be able to see a dam, spillway, and what the reservoir bottom looks like without any water.

Person, grass, tall wells.

Pam Sullivan describes the well field at Katie Creek. This area will soon be inundated by the refilling of Lake Perez. Some wells are being raised up, so that Penn State scientists can assess the effects of the reservoir refilling on local groundwater dynamics.

Kent State students at work collecting water samples at the Katie Creek well field.

Kent State students at work collecting water samples at the Katie Creek well field.

Krista Booth collects a water sample from Lake Perez, which integrates all of the other watersheds we sampled.

Krista Booth collects a water sample from Lake Perez, which integrates all of the other watersheds we sampled.

I’ll try to add some more beauty shots of the CZO watershed at some point, but I wanted to be able to show our class in action in the field.