Currently browsing category

abstracts

Water Management Association of Ohio conference abstract: A Neighborhood-Scale Green Infrastructure Retrofit

I was asked to submit an abstract for the Water Management Association of Ohio conference in November. I’m going to try to sum up 4 years worth of work on the green infrastructure retrofit we’ve been studying in Parma, and I’m looking forward to learning about from the other presenters at this very applied conference.

A Neighborhood-Scale Green Infrastructure Retrofit: Experimental Results, Model Simulations, and Resident Perspectives

Anne J. Jefferson, Pedro M. Avellaneda, Kimberly M. Jarden, V. Kelly Turner, Jennifer M. Grieser

There is growing interest in distributed green infrastructure approaches to stormwater management that can be retrofit into existing development, but there are relatively few studies that demonstrate effectiveness of these approaches at the neighborhood scale. In suburban northeastern Ohio, homeowners on a residential street with 55% impervious surface were given the opportunity to receive free rain barrels, rain gardens, and bioretention cells. Of 163 parcels, only 22 owners (13.5%) chose to participate, despite intense outreach efforts. After pre-treatment monitoring, 37 rain barrels, 7 rain gardens, and 16 street-side bioretention cells were installed in 2013-2014. The monitoring results indicate that the green infrastructure succeeded in reducing peak flows by up to 33% and total runoff volume by up to 40% per storm. The lag time between precipitation and stormflow also increased. A calibrated and validated SWMM model was built to explore the long-term effectiveness of the green infrastructure under 20 years of historical precipitation data. Model results confirm that green infrastructure reduced surface runoff and increased infiltration and evaporation. The model shows that the green infrastructure is capable of reducing flows by >40% at the 1, 2, and 5 year return period, and that, in this project, more benefit is derived from the street-side bioretention cells than from the rain barrels and gardens that treat rooftop runoff. Surveys indicate that many residents viewed stormwater as the city’s problem and had negative perceptions of green infrastructure, despite slightly pro-environment values generally. Substantial hydrological gains were achieved despite low homeowner participation. The project showcases the value of careful experimental design and monitoring to quantify the effects of a green infrastructure project. Finally, the calibrated model allows us to explore a wider range of hydrologic dynamics than can be captured by a monitoring program.

Surface runoff from a closed landfill and the effects on wetland suspended sediment and water quality

Watershed Hydrology lab undergraduate Cody Unferdorfer will be representing the lab at this year’s Geological Society of America meeting in Denver in September. The work that he will be presenting will build on preliminary work that won the Kent State University Undergraduate Research Symposium Geology/Geography division in April, and Cody will have more and better data and analyses to show of at GSA.

Update: Cody will be giving a poster in the session on Undergraduate Research Projects in Hydrogeology on Sunday.

Surface runoff from a closed landfill and the effects on wetland suspended sediment and water quality

Cody Unferdorfer (1), Anne Jefferson (1), Lauren Kinsman-Costello (2), Hayley Buzulencia (1), Laura Sugano (1)
1. Department of Geology, Kent State University
2. Department of Biological Sciences, Kent State University

Abstract
During rainstorms, many wetlands receive surface runoff carrying sediment and dissolved materials. Some of the sediment and solutes remain within the wetland, where they impact aquatic organisms and nutrient cycling. With time, excess sediment can fill in a water body and destroy the aquatic ecosystem, or excess nutrients can lead to eutrophication. Closed landfills have compacted surfaces that can generate large amounts of surface runoff, and the goal of this project is to examine the effects of a closed landfill’s runoff on a wetland.

The study site is a constructed wetland in Parma, Ohio. Water samples were collected during storms beginning in July 2015. We monitored five locations at the wetland: inflow from the landfill; inflow from two green infrastructure treatment trains; inflow from a stream seep, and outflow. Water samples were analyzed for suspended sediment concentration, water stable isotopes, and dissolved forms of nitrogen and phosphorus. Discharge was measured at the outflow.

Based on a preliminary analysis of four storms, of the inflows; the landfill contributes the most suspended sediment with an average of 400 mg/L. There is no correlation between TSS and discharge at the outflow. Instead a first flush effect was observed, where TSS concentrations decreased with time. The landfill inflow is close to the wetland outflow, which could allow for suspended sediment to bypass most interaction with the wetland’s interior. However, comparing rain and wetland outflow stable isotopes shows that water residence time often exceeds a single storm, suggesting that there are opportunities for biogeochemical processing of nutrient inputs within the wetland.

Runoff from the landfill (right) enters the wetland (left) near the wetland's outlet structure. What impact does this muddy water have on the wetland itself? Photo by a Watershed Hydrology lab member, August 7, 2015.

Runoff from the landfill (right) enters the wetland (left) near the wetland’s outlet structure. What impact does this muddy water have on the wetland itself? Photo by a Watershed Hydrology lab member, August 7, 2015.

Evaluating Bioretention Cell and Green Roof Hydrologic Performance in northeastern Ohio

Graduate student Laura Sugano will also be presenting her green infrastructure research at the CUAHSI Biennial Symposium in July.

Evaluating Bioretention Cell and Green Roof Hydrologic Performance in northeastern Ohio

Laura L. Sugano*, Anne J. Jefferson, Lauren E. Kinsman-Costello, Pedro Avellaneda
Kent State University

Abstract

In urban areas, increased runoff from storm events is a significant concern due to flooding, erosion, ecosystem disturbance, and water quality problems. Green stormwater infrastructure is designed to ameliorate these effects by decreasing the flow rate and overall volume of runoff. We compared the effectiveness of a co-located green roof and bioretention cell in order to understand their relative capacities to decrease stormwater runoff, when subjected to the same weather conditions. Our field site was the Cleveland Metroparks’ Watershed Stewardship Center in Parma, Ohio. Beginning in June 2015, rainfall, underdrained outflow, groundwater levels, and soil moisture have been measured on 1-5 minute intervals during 84 storms. Event sizes spanned from 0.25 mm to 54 mm. The bioretention cell completely retained flow from 75% of the storm events, and the green roof retained 49% of storms. The bioretention cell completely retained all events smaller than 3.05 mm and the green roof completely retained all events smaller than 0.51 mm, though some larger events were also completely retained. For storms where underdrain outflow occurred, the average retention was 25% for the bioretention cell and 79% for the green roof. The bioretention cell completely retained 64% of the storm events in summer 2015, 90% in fall 2015, and 77% in winter 2015-2016. The green roof completely retained 37% of the storm events in summer 2015, 48% in fall 2015, and 89% in winter 2015-2016. The groundwater level in the bioretention cell increases in response to storm events and lowers between storms. The soil moisture in the green roof increases during storm events and slowly decreases between storms. My study suggests that bioretention cells can mitigate stormwater issues better than green roofs because they have the capacity to retain more stormwater due to their thicker substrate and their ground-location allows it to retain surface runoff as well as direct precipitation.

The effect of antecedent soil moisture conditions on green roof runoff water quality and quantity

Lab alumna and 2015 REU student Jillian Sarazen is presenting her work this week at the 59th Annual Conference on Great Lakes Research, affectionately known as IAGLR. Jillian graduated from Oberlin College in May. Congratulations on both fronts, Jillian!

The effect of antecedent soil moisture conditions on green roof runoff water quality and quantity.

SARAZEN, J.C.1, KINSMAN-COSTELLO, L.E.2, JEFFERSON, A.J.3, and SCHOLL, A.4,

1. Oberlin College Department of Biology, Oberlin, OH, 44074, USA;
2. Kent State University Department of Biological Sciences, Kent, OH, 44240, USA;
3. Kent State University Department of Geology, Kent, OH, 44240, USA;
4. Kent State University Department of Geography, Kent, OH, 44240, USA.

One of the many benefits of green roofs is that they reduce the amount of stormwater runoff as compared to normal roofs, however they can negatively impact water quality. This study was conducted at the three year-old green roof on Cleveland Metropark’s Watershed Stewardship Center in Parma, Ohio. The objectives were to (1) measure green roof runoff quantity and quality of phosphate (PO43-), nitrate (NO3-) and ammonium (NH4+) concentrations during rain events and (2) relate antecedent soil moisture conditions to water quality and quantity. We sampled sequential water samples (Teledyne, ISCO) during four summer 2015 rain events that varied in size and intensity. We measured soil moisture at high temporal resolution using four logging sensors and two to three times per week at 33 sampling locations using a handheld probe. Soil moisture increased immediately upon commencement of rainfall. Spatial data show a response in the soil to rain events with high variability, but no clear patterns. Phosphate export increased linearly with total outflow, while ammonium and nitrate export did not show clear relationships with outflow quantity. Results of our study show that there is a trade off between ecohydrologic function and water quality, as indicated by leaching of excess nutrients in the green roof outflow.

Keywords: Water quality, Green Roof, Urban watersheds, Green Infrastructure, Lake Erie.

How low will they go? The response of headwater streams in the Oregon Cascades to the 2015 drought

From a distance, Anne has been watching an incredibly unusual summer play out in the Pacific Northwest, following a winter with far less snow (but more rain) than usual. Folks on the ground in Oregon have been collecting data on the response of the Oregon Cascades streams to “no snow, low flow” conditions. Anne is making minor contributions to the following poster, to be presented in Session No. 291, Geomorphology and Quaternary Geology (Posters) at Booth# 101 on Wednesday, 4 November 2015: 9:00 AM-6:30 PM.

HOW LOW WILL THEY GO? THE RESPONSE OF HEADWATER STREAMS IN THE OREGON CASCADES TO THE 2015 DROUGHT

LEWIS, Sarah L.1, GRANT, Gordon E.2, NOLIN, Anne W.1, HEMPEL, Laura A.1, JEFFERSON, Anne J.3 and SELKER, John S.4, (1)College of Earth Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, (2)Pacific Northwest Research Station, USDA Forest Service, 3200 SW Jefferson Way, Corvallis, OR 97331-8550, (3)Department of Geology, Kent State University, Kent, OH 44242, (4)Biological & Ecological Engineering, Oregon State University, Corvallis, OR 97331, sarah.lewis@oregonstate.edu

Larger rivers draining the Oregon Cascades are sourced from headwater systems with two distinct runoff regimes: surface-flow dominated watersheds with flashy hydrographs, rapid baseflow recession, and very low summer flows; and spring-fed systems, with slow-responding hydrographs, long baseflow recession, and summer flow sustained by deep groundwater fed coldwater springs. Our previous research has explored these differences on both the wet west-side and dry east-side of the Cascade crest, as expressed in contrasting discharge and temperature regimes, drainage efficiency, low and peak flow dynamics, and sensitivity to snowpack and climate change scenarios. In 2015, record low winter snowpack combined with an anomalously dry spring resulted in historically low flows across our research sites and throughout Oregon. These extreme meteorological conditions, equivalent to a 4°C warming scenario, offer an exceptional opportunity to witness how these contrasting stream networks might respond to anticipated changes in amount and timing of recharge.
Conceptually, channel network response to decreasing discharge may involve both lateral and longitudinal contraction. Lateral contraction, the decrease of wetted channel width and depth, occurs in both surface-flow and spring-fed streams as flows diminish. Longitudinal contraction may be expressed as (a) a gradual drying of the stream channel and downstream retreat of the channel head, (b) a “jump” of the channel head downstream to the next spring when an upper spring goes dry, or (c) no change in channel head despite diminishing flows. We hypothesize that while individual stream channels may display a combination of these dynamics, surface-flow and spring-fed watersheds will have distinctive and different behaviors. We field test our hypothesis by monitoring channel head locations in 6 watersheds during the low flow recession of 2015, and repeatedly measuring discharge, water quality and hydraulic geometry at a longitudinal array of sites along each surface-flow or spring-fed channel. The resulting data set can be used to explore the fundamental processes by which drainage networks accommodate decreasing flows.

Hydrologic response to watershed metrics describing urban development and mitigation with stormwater control measures

Watershed Hydrology lab collaborator and Ph.D. candidate Colin Bell will be giving a talk in T106. From Green Roofs and Gutters to Urban Streams: Advancing Urban Watershed Hydrology through Innovative Field and Modeling Approaches on Monday, 2 November 2015 at 2:25 pm in Room 342 (Baltimore Convention Center).

HYDROLOGIC RESPONSE TO WATERSHED METRICS DESCRIBING URBAN DEVELOPMENT AND MITIGATION WITH STORMWATER CONTROL MEASURES

BELL, Colin D., Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, MCMILLAN, Sara K., Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2093, JEFFERSON, Anne J., Department of Geology, Kent State University, Kent, OH 44242 and CLINTON, Sandra, Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, bell137@purdue.edu

Stormwater control measures (SCMs) are designed to mitigate changes in hydrologic response to hydrometeorological forcing caused by urban development. Total imperviousness (TI) is a metric that effectively quantifies this urban development, but does not contain information about the extent of SCM mitigation within the watershed. The hydrologic records of 16 urban watersheds in Charlotte, NC spanning a range of TI (4.1 to 54%) and mitigation with SCMs (1.3% to 89%) were analyzed to identify which of a suite of easily-determined watershed metrics best predict hydrologic behavior. We tested the watershed metrics TI, percent forested coverage, impervious area unmitigated by SCMs, effective impervious area, percent SCM-mitigated area, and a newly-developed metric called the mitigation factor. Linear models proved TI to be the best predictor of the 10th, 30th, 50th, 70th, and 90th percentiles of the distributions of peak unit discharge and rainfall-runoff ratios. In addition, TI was the best predictor of a watershed’s ability to buffer small rain events and the rate at which a stream responds once that buffering capacity is exceeded. Additional variables describing hydrograph record flashiness and water yield were best correlated to unmitigated imperviousness and forest coverage, respectively. For the range of watersheds considered, simple metrics that quantify SCM mitigation of both total watershed area and impervious area were neither the strongest primary control nor a consistent, secondary control on storm event behavior across sites. The dominance of TI as a control on hydrology over metrics of stormwater mitigation could either be attributed to the range of sites considered (14 out of 16 sites had less than 20% SCM mitigated area) or because the watershed metrics were not able to consider the spatial arrangement of impervious surfaces and SCMs. Our results have implications for policy makers designing standards that seek to minimize stream ecosystem degradation due to hydrologic disturbances from urbanization.

Quantifying the influences of stormwater control measures on urban headwater streamflow

The Watershed Hydrology Lab will be at the Geological Society of America meeting in November in Baltimore. Anne will be giving an invited talk in the Urban Geochemistry session (T32) on Sunday, November 1st at 9 am in BCC room 308. Here’s what she’ll be talking about:

Quantifying the influences of stormwater control measures on urban headwater streamflow

Anne Jefferson1, Colin Bell2, Sara McMillan2, and Sandra Clinton3
1. Department of Geology, Kent State University, 221 McGilvrey Hall, Kent, OH 44242 USA. Phone: 1-330-672-2746 Email: ajeffer9@kent.edu
2. Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA.
3. Department of Geography and Earth Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA.

Stormwater control measures are designed to mitigate the hydrological consequences of urbanization, but their as-built effectiveness in altering patterns of urban streamflow remains poorly quantified. Stream gaging and water stable isotopes were used to understand the effects of stormwater ponds and wetlands on hydrograph characteristics and water sourcing in four urban headwater streams in Charlotte, North Carolina. At the small watershed scale (0.15-1.5 km2), runoff ratio and peak discharge are more strongly related to impervious area than area treated by stormwater controls. For one stream during 10 events, we used stable isotopes to quantify contributions of retention pond discharge to streamflow, taking advantage of the unique isotope signature of pond outflow. The pond, which drains 25% of the watershed’s impervious area, contributed an average of 10% (0-21%) of the streamflow on the rising limb and 12% (0-19%) of discharge at peak flow. During recession, this pond contributed an average of 32% (11-54%) of the stream’s discharge, reflecting the pond’s design goals of temporarily storing and delaying runoff. The isotopic signature of the pond’s discharge also reveals varying water residence times (hours to weeks) within the structure, which may have implications for nutrient and metal fluxes into the stream. Our results suggest that even when individual stormwater control measures are working as designed, they are insufficient to fully mitigate the effects of urbanization on stream hydrology. They also demonstrate the combination of traditional hydrometric and tracer-based techniques can reveal a nuanced view of stormwater influences on urban streams. Such hydrological nuance will be necessary to develop strong mechanistic understanding of biogeochemical processes in urban streams and watersheds.

AGU Abstract: Dynamic Hydraulic Conductivity, Streambed Sediment, and Biogeochemistry Following Stream Restoration

The Watershed Hydrology Lab will be represented at the AGU Fall Meeting in December in the session on “Groundwater-Surface Water Interactions: Identifying and Integrating Physical, Biological, and Chemical Processes.”

Dynamic Hydraulic Conductivity, Streambed Sediment, and Biogeochemistry Following Stream Restoration

Anne Jefferson, Stuart Baker, and Lauren Kinsman-Costello, Kent State University, Kent, OH, United States

Stream restoration projects strive to improve water quality and degraded habitat, yet restoration projects often fall short of achieving their goals. Hyporheic exchange facilitates biogeochemical interaction which can contribute to positive water quality and habitat, but there are limited data on how restoration affects hyporheic processes. Hyporheic flowpaths can be altered by the processes and products of stream restoration, as well as the transport of fine sediment through the stream bed post-restoration. In two northeastern Ohio headwater streams, variations in hydraulic conductivity and pore water chemistry were monitored following restoration, as measures of hyporheic functioning. A second-order stream restored in August 2013, had a slight decrease in average hydraulic conductivity but an increase in heterogeneity from pre-restoration to four months post-restoration. Data collected 10 and 15 months post-restoration show continued declines in hydraulic conductivity throughout large constructed riffles. These piezometers also indicate dominance of downwelling throughout the riffles with only isolated upwelling locations. Grain size analysis of freeze cores collected in streambed sediments show differences suggesting fluvial transport and sorting have occurred since construction was completed. Pore water sampled from piezometers within the riffles had Mn2+ concentrations ten times higher than surface water, suggesting redox transformations are occurring along hyporheic flowpaths. A first-order stream reach, immediately downstream of a dam, restored in April 2014 had no significant change in average hydraulic conductivity between 1 and 2 months post-restoration, but many individual piezometers had increases of over 100% in high gradient positions or decreases of over 50% in low gradient positions. Changes in hydraulic conductivities in both restored streams are thought to be an adjustments from disturbance to a new dynamic equilibrium influenced by the morphology and sediment regime established by restoration, suggesting these are important processes to consider in the design of such projects.

One of the study streams, 3 months post-restoration.

One of the study streams, 3 months post-restoration.

Abstract: Assessing the Possibilities of the West Creek Watershed Stewardship Center Vegetated Roof

Results of our work on green infrastructure at Cleveland Metroparks Watershed Stewardship Center will make its debut at the CitiesAlive 13th Annual Green Roofs & Walls Conference, in New York, NY from October 5th to October 8th, 2015.

Assessing the Possibilities of the West Creek Watershed Stewardship Center Vegetated Roof

Jessie Hawkins, Reid Coffman, Anne Jefferson, Lauren Kinsman-Costello

The vegetated roof at the Cleveland Metroparks’ Watershed Stewardship Center is an element in a suite of green infrastructure approaches, intended to be educational components, showcasing various methods of stormwater management. This study reviews estimation and design decision making tools to understand expected performance. Field data will be used to assess the current conditions of the roof in order to make recommendations for improvement of the existing vegetated roof system.

The planting design for the roof was intended to intercept rainfall with prostrate vegetation, pre-grown in 4 inch thick trays planted with varieties of Sedum spp. and Allium senescens. Plant species composition and biomass will be assessed in regard to stormwater performance and biodiversity, allowing for an invertebrate habitat. Soil samples taken from the roof have been analyzed for infiltration and nutrient content. Nutrient concentrations will be assessed in rainwater and compared to water flowing off the roof, determining if the roof is a source of nutrients to the downstream ecosystems. Sound reduction and thermal properties will be assessed with the results used for recommendation, serving as a resource guideline for local implementation.

Ground level view of the green roof, April 2015. Photo by A. Jefferson.

Ground level view of the green roof, April 2015. Photo by A. Jefferson.

Soil moisture dynamics and their effect on bioretention performance in Northeast Ohio

Most members of the Watershed Hydrology lab chose to go to GSA this year, and we had a blast sharing our science and enjoying Vancouver and surrounding areas. But now we are sadly missing out on the American Geophysical Union (AGU) meeting going on this week. Fortunately, a small piece of our work will be represented by outstanding summer REU student Sidney Bush. She’s giving a poster on Thursday afternoon in the Moscone West poster hall at H43F-1017. Here’s her abstract:

Soil moisture dynamics and their effect on bioretention performance in Northeast Ohio

Sidney A. Bush1, Anne Jefferson2, Kimberly Jarden2, Lauren E Kinsman-Costello2 and Jennifer Grieser3, (1)University of Virginia Main Campus, Charlottesville, VA, United States, (2)Kent State University Kent Campus, Kent, OH, United States, (3)Cleveland Metroparks, Parma, OH, United States

Urban impervious surfaces lead to increases in stormwater runoff. Green infrastructure, like bioretention cells, is being used to mitigate negative impacts of runoff by disconnecting impervious surfaces from storm water systems and redirecting flow to decentralized treatment areas. While bioretention soil characteristics are carefully designed, little research is available on soil moisture dynamics within the cells and how these might relate to inter-storm variability in performance. Bioretentions have been installed along a residential street in Parma, Ohio to determine the impact of green infrastructure on the West Creek watershed, a 36 km2 subwatershed of the Cuyahoga River. Bioretentions were installed in two phases (Phase I in 2013 and Phase II in 2014); design and vegetation density vary slightly between the two phases. Our research focuses on characterizing soil moisture dynamics of multiple bioretentions and assessing their impact on stormwater runoff at the street scale. Soil moisture measurements were collected in transects for eight bioretentions over the course of one summer. Vegetation indices of canopy height, percent vegetative cover, species richness and NDVI were also measured. A flow meter in the storm drain at the end of the street measured storm sewer discharge. Precipitation was recorded from a meteorological station 2 km from the research site. Soil moisture increased in response to precipitation and decreased to relatively stable conditions within 3 days following a rain event. Phase II bioretentions exhibited greater soil moisture and less vegetation than Phase I bioretentions, though the relationship between soil moisture and vegetative cover is inconclusive for bioretentions constructed in the same phase. Data from five storms suggest that pre-event soil moisture does not control the runoff-to-rainfall ratio, which we use as a measure of bioretention performance. However, discharge data indicate that hydrograph characteristics, such as lag time and peak flow, are altered relative to a control street. This analysis suggests that street-scale implementation of bioretention can reduce the impact of impervious surface on stormflows, but more information is needed to fully understand how soil moisture of the bioretentions affects inter-storm variability in performance.

Sidney’s poster is part of a session on “Water, Energy, and Society in Urban Systems” that Anne nominally helped convened. Check out all of the stimulating morning talks and awesome afternoon posters on Thursday. The rest of us are sorry to be missing it, but if *you* are in San Francisco at AGU this week, don’t miss out on all the great science in the session.